The Universal Compactification of Topological Convex Sets and Modules
Journal of convex analysis, Tome 8 (2001) no. 1, pp. 255-268
Cet article a éte moissonné depuis la source Heldermann Verlag
A topological convex set is a convex set in a topological linear space with the induced topology. There is a universal continuous affine mapping of such a set into a compact convex subset of a locally convex linear space. Actually this compactification is a subset of a base normed Saks space. The results also hold for topological convex modules.
@article{JCA_2001_8_1_JCA_2001_8_1_a11,
author = {D. Pumpl\"un},
title = {The {Universal} {Compactification} of {Topological} {Convex} {Sets} and {Modules}},
journal = {Journal of convex analysis},
pages = {255--268},
year = {2001},
volume = {8},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JCA_2001_8_1_JCA_2001_8_1_a11/}
}
D. Pumplün. The Universal Compactification of Topological Convex Sets and Modules. Journal of convex analysis, Tome 8 (2001) no. 1, pp. 255-268. http://geodesic.mathdoc.fr/item/JCA_2001_8_1_JCA_2001_8_1_a11/