The Universal Compactification of Topological Convex Sets and Modules
Journal of convex analysis, Tome 8 (2001) no. 1, pp. 255-268.

Voir la notice de l'article provenant de la source Heldermann Verlag

A topological convex set is a convex set in a topological linear space with the induced topology. There is a universal continuous affine mapping of such a set into a compact convex subset of a locally convex linear space. Actually this compactification is a subset of a base normed Saks space. The results also hold for topological convex modules.
@article{JCA_2001_8_1_JCA_2001_8_1_a11,
     author = {D. Pumpl\"un},
     title = {The {Universal} {Compactification} of {Topological} {Convex} {Sets} and {Modules}},
     journal = {Journal of convex analysis},
     pages = {255--268},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2001},
     url = {http://geodesic.mathdoc.fr/item/JCA_2001_8_1_JCA_2001_8_1_a11/}
}
TY  - JOUR
AU  - D. Pumplün
TI  - The Universal Compactification of Topological Convex Sets and Modules
JO  - Journal of convex analysis
PY  - 2001
SP  - 255
EP  - 268
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2001_8_1_JCA_2001_8_1_a11/
ID  - JCA_2001_8_1_JCA_2001_8_1_a11
ER  - 
%0 Journal Article
%A D. Pumplün
%T The Universal Compactification of Topological Convex Sets and Modules
%J Journal of convex analysis
%D 2001
%P 255-268
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2001_8_1_JCA_2001_8_1_a11/
%F JCA_2001_8_1_JCA_2001_8_1_a11
D. Pumplün. The Universal Compactification of Topological Convex Sets and Modules. Journal of convex analysis, Tome 8 (2001) no. 1, pp. 255-268. http://geodesic.mathdoc.fr/item/JCA_2001_8_1_JCA_2001_8_1_a11/