Homographic Approximation for Some Nonlinear Parabolic Unilateral Problems
Journal of convex analysis, Tome 7 (2000) no. 2, pp. 353-374.

Voir la notice de l'article provenant de la source Heldermann Verlag

We deal with nonlinear parabolic unilateral problems by means of the homographic approximation, introduced by C. M. Brauner and B. Nicolaenko [in: "Nonlinear Partial Diff. Equations and Their Applications", H. Brezis, J. L. Lions (eds.), Research Notes in Mathematics 70 (1982) 86--128] in the linear elliptic case. The interest in this kind of penalty method arises from the fact that, in contrast with the usual penalization the homographic approximation is a "bounded penalty", which turns out to be convenient to have a priori estimates on the approximate solutions.
@article{JCA_2000_7_2_JCA_2000_7_2_a6,
     author = {M. C. Palmeri},
     title = {Homographic {Approximation} for {Some} {Nonlinear} {Parabolic} {Unilateral} {Problems}},
     journal = {Journal of convex analysis},
     pages = {353--374},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2000},
     url = {http://geodesic.mathdoc.fr/item/JCA_2000_7_2_JCA_2000_7_2_a6/}
}
TY  - JOUR
AU  - M. C. Palmeri
TI  - Homographic Approximation for Some Nonlinear Parabolic Unilateral Problems
JO  - Journal of convex analysis
PY  - 2000
SP  - 353
EP  - 374
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2000_7_2_JCA_2000_7_2_a6/
ID  - JCA_2000_7_2_JCA_2000_7_2_a6
ER  - 
%0 Journal Article
%A M. C. Palmeri
%T Homographic Approximation for Some Nonlinear Parabolic Unilateral Problems
%J Journal of convex analysis
%D 2000
%P 353-374
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2000_7_2_JCA_2000_7_2_a6/
%F JCA_2000_7_2_JCA_2000_7_2_a6
M. C. Palmeri. Homographic Approximation for Some Nonlinear Parabolic Unilateral Problems. Journal of convex analysis, Tome 7 (2000) no. 2, pp. 353-374. http://geodesic.mathdoc.fr/item/JCA_2000_7_2_JCA_2000_7_2_a6/