Total Convexity for Powers of the Norm in Uniformly Convex Banach Spaces
Journal of convex analysis, Tome 7 (2000) no. 2, pp. 319-334
Cet article a éte moissonné depuis la source Heldermann Verlag
The aim of the paper is to show that, in uniformly convex Banach spaces, the powers of the norm with exponent r > 1 share a property called total convexity. Using this fact we establish a formula for determining Bregman projections on closed hyperplanes and half spaces. This leads to a method for solving linear operator equations (e.g., first order Fredholm and Volterra equations) in spaces which are uniformly convex and smooth.
Mots-clés :
Uniformly convex Banach space, totally convex function, duality mapping, Bregman projection
@article{JCA_2000_7_2_JCA_2000_7_2_a4,
author = {D. Butnariu and A. N. Iusem and E. Resmerita},
title = {Total {Convexity} for {Powers} of the {Norm} in {Uniformly} {Convex} {Banach} {Spaces}},
journal = {Journal of convex analysis},
pages = {319--334},
year = {2000},
volume = {7},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JCA_2000_7_2_JCA_2000_7_2_a4/}
}
TY - JOUR AU - D. Butnariu AU - A. N. Iusem AU - E. Resmerita TI - Total Convexity for Powers of the Norm in Uniformly Convex Banach Spaces JO - Journal of convex analysis PY - 2000 SP - 319 EP - 334 VL - 7 IS - 2 UR - http://geodesic.mathdoc.fr/item/JCA_2000_7_2_JCA_2000_7_2_a4/ ID - JCA_2000_7_2_JCA_2000_7_2_a4 ER -
D. Butnariu; A. N. Iusem; E. Resmerita. Total Convexity for Powers of the Norm in Uniformly Convex Banach Spaces. Journal of convex analysis, Tome 7 (2000) no. 2, pp. 319-334. http://geodesic.mathdoc.fr/item/JCA_2000_7_2_JCA_2000_7_2_a4/