On the Lavrentieff Phenomenon for some Classes of Dirichlet Minimum Problems
Journal of convex analysis, Tome 7 (2000) no. 2, pp. 271-298
Cet article a éte moissonné depuis la source Heldermann Verlag
Starting from some recent results of the authors, the Lavrentieff phenomenon between BV functions and smooth ones for the functional appearing in some classes of relaxed Dirichlet problems is studied. The occurrence of the phenomenon is first discussed by means of an example, and then completely characterized. Sufficient conditions implying the absence of the phenomenon are also proved, and some relaxation properties of the above functionals are also established.
@article{JCA_2000_7_2_JCA_2000_7_2_a2,
author = {R. De Arcangelis and C. Trombetti},
title = {On the {Lavrentieff} {Phenomenon} for some {Classes} of {Dirichlet} {Minimum} {Problems}},
journal = {Journal of convex analysis},
pages = {271--298},
year = {2000},
volume = {7},
number = {2},
url = {http://geodesic.mathdoc.fr/item/JCA_2000_7_2_JCA_2000_7_2_a2/}
}
TY - JOUR AU - R. De Arcangelis AU - C. Trombetti TI - On the Lavrentieff Phenomenon for some Classes of Dirichlet Minimum Problems JO - Journal of convex analysis PY - 2000 SP - 271 EP - 298 VL - 7 IS - 2 UR - http://geodesic.mathdoc.fr/item/JCA_2000_7_2_JCA_2000_7_2_a2/ ID - JCA_2000_7_2_JCA_2000_7_2_a2 ER -
R. De Arcangelis; C. Trombetti. On the Lavrentieff Phenomenon for some Classes of Dirichlet Minimum Problems. Journal of convex analysis, Tome 7 (2000) no. 2, pp. 271-298. http://geodesic.mathdoc.fr/item/JCA_2000_7_2_JCA_2000_7_2_a2/