Absolute Minimizer in Convex Programming by Exponential Penalty
Journal of convex analysis, Tome 7 (2000) no. 1, pp. 197-202.

Voir la notice de l'article provenant de la source Heldermann Verlag

We consider a nonlinear convex program. Under some general hypotheses, we prove that approximate solutions obtained by exponential penalty converge toward a particular solution of the original convex program as the penalty parameter goes to zero. This particular solution is called the absolute minimizer and is characterized as the unique solution of a hierarchical scheme of minimax problems.
Classification : 90C25, 90C31
Mots-clés : Convexity, minimax problems, penalty methods, nonuniqueness, optimal trajectory, convergence
@article{JCA_2000_7_1_JCA_2000_7_1_a9,
     author = {F. Alvarez},
     title = {Absolute {Minimizer} in {Convex} {Programming} by {Exponential} {Penalty}},
     journal = {Journal of convex analysis},
     pages = {197--202},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2000},
     url = {http://geodesic.mathdoc.fr/item/JCA_2000_7_1_JCA_2000_7_1_a9/}
}
TY  - JOUR
AU  - F. Alvarez
TI  - Absolute Minimizer in Convex Programming by Exponential Penalty
JO  - Journal of convex analysis
PY  - 2000
SP  - 197
EP  - 202
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_2000_7_1_JCA_2000_7_1_a9/
ID  - JCA_2000_7_1_JCA_2000_7_1_a9
ER  - 
%0 Journal Article
%A F. Alvarez
%T Absolute Minimizer in Convex Programming by Exponential Penalty
%J Journal of convex analysis
%D 2000
%P 197-202
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_2000_7_1_JCA_2000_7_1_a9/
%F JCA_2000_7_1_JCA_2000_7_1_a9
F. Alvarez. Absolute Minimizer in Convex Programming by Exponential Penalty. Journal of convex analysis, Tome 7 (2000) no. 1, pp. 197-202. http://geodesic.mathdoc.fr/item/JCA_2000_7_1_JCA_2000_7_1_a9/