Euler-Lagrange Inclusions and Existence of Minimizers for a Class of Non-Coercive Variational Problems
Journal of convex analysis, Tome 7 (2000) no. 1, pp. 167-182
We prove the existence of radially symmetric minimizers, in the class of Sobolev vector-valued functions vanishing on the boundary of a ball, for convex non-coercive integral functionals. We associate to the functional a system of differential inclusions of Euler-Lagrange type, and we prove that the solvability of these inclusions is a necessary and sufficient condition for the existence of a radially symmetric minimizer.
Classification :
49J10, 45K05, 49J30
Mots-clés : Calculus of variations, existence, Euler-Lagrange inclusions, radially symmetric solutions, non-coercive problems
Mots-clés : Calculus of variations, existence, Euler-Lagrange inclusions, radially symmetric solutions, non-coercive problems
@article{JCA_2000_7_1_JCA_2000_7_1_a7,
author = {G. Crasta and A. Malusa},
title = {Euler-Lagrange {Inclusions} and {Existence} of {Minimizers} for a {Class} of {Non-Coercive} {Variational} {Problems}},
journal = {Journal of convex analysis},
pages = {167--182},
year = {2000},
volume = {7},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JCA_2000_7_1_JCA_2000_7_1_a7/}
}
TY - JOUR AU - G. Crasta AU - A. Malusa TI - Euler-Lagrange Inclusions and Existence of Minimizers for a Class of Non-Coercive Variational Problems JO - Journal of convex analysis PY - 2000 SP - 167 EP - 182 VL - 7 IS - 1 UR - http://geodesic.mathdoc.fr/item/JCA_2000_7_1_JCA_2000_7_1_a7/ ID - JCA_2000_7_1_JCA_2000_7_1_a7 ER -
%0 Journal Article %A G. Crasta %A A. Malusa %T Euler-Lagrange Inclusions and Existence of Minimizers for a Class of Non-Coercive Variational Problems %J Journal of convex analysis %D 2000 %P 167-182 %V 7 %N 1 %U http://geodesic.mathdoc.fr/item/JCA_2000_7_1_JCA_2000_7_1_a7/ %F JCA_2000_7_1_JCA_2000_7_1_a7
G. Crasta; A. Malusa. Euler-Lagrange Inclusions and Existence of Minimizers for a Class of Non-Coercive Variational Problems. Journal of convex analysis, Tome 7 (2000) no. 1, pp. 167-182. http://geodesic.mathdoc.fr/item/JCA_2000_7_1_JCA_2000_7_1_a7/