Rank-One Connections at Infinity and Quasiconvex Hulls
Journal of convex analysis, Tome 7 (2000) no. 1, pp. 19-46
Voir la notice de l'article provenant de la source Heldermann Verlag
We define p-rank-one connections at infinity for an unbounded set K in MN×n and show that the quasiconvex hull Qp(K) may be bigger than K if K has a p-rank-one connection, where Qp(K) is the zero set of the quasiconvex relaxation of the p-distance function to K. We examine some examples and compare Qp(K) with Qp(K) - a more restrictive quasiconvex hull of K.
@article{JCA_2000_7_1_JCA_2000_7_1_a1,
author = {K. Zhang},
title = {Rank-One {Connections} at {Infinity} and {Quasiconvex} {Hulls}},
journal = {Journal of convex analysis},
pages = {19--46},
publisher = {mathdoc},
volume = {7},
number = {1},
year = {2000},
url = {http://geodesic.mathdoc.fr/item/JCA_2000_7_1_JCA_2000_7_1_a1/}
}
K. Zhang. Rank-One Connections at Infinity and Quasiconvex Hulls. Journal of convex analysis, Tome 7 (2000) no. 1, pp. 19-46. http://geodesic.mathdoc.fr/item/JCA_2000_7_1_JCA_2000_7_1_a1/