On a Non-Standard Convex Regularization and the Relaxation of Unbounded Integral Functionals of the Calculus of Variations
Journal of convex analysis, Tome 6 (1999) no. 1, pp. 141-162 Cet article a éte moissonné depuis la source Heldermann Verlag

Voir la notice de l'article

A new convex regularization procedure for a function, appearing in the study of some sequential relaxation processes for integral functionals of the Calculus of Variations, is introduced and studied. The connections with the usual convex, lower semicontinuous enveloping are investigated, together with examples showing that they are different. Applications to integral representation problems, and to sequential relaxation processes are also given.
@article{JCA_1999_6_1_JCA_1999_6_1_a8,
     author = {L. Carbone and R. De Arcangelis},
     title = {On a {Non-Standard} {Convex} {Regularization} and the {Relaxation} of {Unbounded} {Integral} {Functionals} of the {Calculus} of {Variations}},
     journal = {Journal of convex analysis},
     pages = {141--162},
     year = {1999},
     volume = {6},
     number = {1},
     url = {http://geodesic.mathdoc.fr/item/JCA_1999_6_1_JCA_1999_6_1_a8/}
}
TY  - JOUR
AU  - L. Carbone
AU  - R. De Arcangelis
TI  - On a Non-Standard Convex Regularization and the Relaxation of Unbounded Integral Functionals of the Calculus of Variations
JO  - Journal of convex analysis
PY  - 1999
SP  - 141
EP  - 162
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JCA_1999_6_1_JCA_1999_6_1_a8/
ID  - JCA_1999_6_1_JCA_1999_6_1_a8
ER  - 
%0 Journal Article
%A L. Carbone
%A R. De Arcangelis
%T On a Non-Standard Convex Regularization and the Relaxation of Unbounded Integral Functionals of the Calculus of Variations
%J Journal of convex analysis
%D 1999
%P 141-162
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/JCA_1999_6_1_JCA_1999_6_1_a8/
%F JCA_1999_6_1_JCA_1999_6_1_a8
L. Carbone; R. De Arcangelis. On a Non-Standard Convex Regularization and the Relaxation of Unbounded Integral Functionals of the Calculus of Variations. Journal of convex analysis, Tome 6 (1999) no. 1, pp. 141-162. http://geodesic.mathdoc.fr/item/JCA_1999_6_1_JCA_1999_6_1_a8/