Least Deviation Decomposition with Respect to a Pair of Convex Sets
Journal of convex analysis, Tome 6 (1999) no. 1, pp. 115-14.

Voir la notice de l'article provenant de la source Heldermann Verlag

Let K1 and K2 be two nonempty closed convex sets in some normed space (H,' . '). This paper is concerned with the question of finding a "good" decomposition, with respect to K1 and K2, of a given element of the Minkowski sum K1+K2. We introduce and discuss the concept of least deviation decomposition. This concept is an extension of the Moreau orthogonal decomposition with respect to a pair of mutually polar cones. Techniques of convex analysis are applied to obtain some sensitivity and duality results related to the decomposition problem.
Classification : 41A65, 52A41
Mots-clés : Least deviation decomposition, convex analysis, Moreau orthogonal decomposition
@article{JCA_1999_6_1_JCA_1999_6_1_a7,
     author = {D. T. Luc and J. E. Martinez-Legaz and A. Seeger},
     title = {Least {Deviation} {Decomposition} with {Respect} to a {Pair} of {Convex} {Sets}},
     journal = {Journal of convex analysis},
     pages = {115--14},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {1999},
     url = {http://geodesic.mathdoc.fr/item/JCA_1999_6_1_JCA_1999_6_1_a7/}
}
TY  - JOUR
AU  - D. T. Luc
AU  - J. E. Martinez-Legaz
AU  - A. Seeger
TI  - Least Deviation Decomposition with Respect to a Pair of Convex Sets
JO  - Journal of convex analysis
PY  - 1999
SP  - 115
EP  - 14
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_1999_6_1_JCA_1999_6_1_a7/
ID  - JCA_1999_6_1_JCA_1999_6_1_a7
ER  - 
%0 Journal Article
%A D. T. Luc
%A J. E. Martinez-Legaz
%A A. Seeger
%T Least Deviation Decomposition with Respect to a Pair of Convex Sets
%J Journal of convex analysis
%D 1999
%P 115-14
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_1999_6_1_JCA_1999_6_1_a7/
%F JCA_1999_6_1_JCA_1999_6_1_a7
D. T. Luc; J. E. Martinez-Legaz; A. Seeger. Least Deviation Decomposition with Respect to a Pair of Convex Sets. Journal of convex analysis, Tome 6 (1999) no. 1, pp. 115-14. http://geodesic.mathdoc.fr/item/JCA_1999_6_1_JCA_1999_6_1_a7/