A Hybrid Projection-Proximal Point Algorithm
Journal of convex analysis, Tome 6 (1999) no. 1, pp. 59-7.

Voir la notice de l'article provenant de la source Heldermann Verlag

We propose a modification of the classical proximal point algorithm for finding zeroes of a maximal monotone operator in a Hilbert space. In particular, an approximate proximal point iteration is used to construct a hyperplane which strictly separates the current iterate from the solution set of the problem. This step is then followed by a projection of the current iterate onto the separating hyperplane. All information required for this projection operation is readily available at the end of the approximate proximal step, and therefore this projection entails no additional computational cost. The new algorithm allows significant relaxation of tolerance requirements imposed on the solution of proximal point subproblems, which yields a more practical framework. Weak global convergence and local linear rate of convergence are established under suitable assumptions. Additionally, presented analysis yields an alternative proof of convergence for the exact proximal point method, which allows a nice geometric interpretation, and is somewhat more intuitive than the classical proof.
Classification : 90C25, 49J45, 49M45
Mots-clés : Maximal monotone operators, proximal point methods, projection methods
@article{JCA_1999_6_1_JCA_1999_6_1_a4,
     author = {M. V. Solodov and B. F. Svaiter},
     title = {A {Hybrid} {Projection-Proximal} {Point} {Algorithm}},
     journal = {Journal of convex analysis},
     pages = {59--7},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {1999},
     url = {http://geodesic.mathdoc.fr/item/JCA_1999_6_1_JCA_1999_6_1_a4/}
}
TY  - JOUR
AU  - M. V. Solodov
AU  - B. F. Svaiter
TI  - A Hybrid Projection-Proximal Point Algorithm
JO  - Journal of convex analysis
PY  - 1999
SP  - 59
EP  - 7
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/JCA_1999_6_1_JCA_1999_6_1_a4/
ID  - JCA_1999_6_1_JCA_1999_6_1_a4
ER  - 
%0 Journal Article
%A M. V. Solodov
%A B. F. Svaiter
%T A Hybrid Projection-Proximal Point Algorithm
%J Journal of convex analysis
%D 1999
%P 59-7
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/JCA_1999_6_1_JCA_1999_6_1_a4/
%F JCA_1999_6_1_JCA_1999_6_1_a4
M. V. Solodov; B. F. Svaiter. A Hybrid Projection-Proximal Point Algorithm. Journal of convex analysis, Tome 6 (1999) no. 1, pp. 59-7. http://geodesic.mathdoc.fr/item/JCA_1999_6_1_JCA_1999_6_1_a4/