Asymptotic Analysis to a Phase-Field Model with a Nonsmooth Memory Kernel
Journal of convex analysis, Tome 6 (1999) no. 1, pp. 41-58
Cet article a éte moissonné depuis la source Heldermann Verlag
A phase-field model based on the Gurtin-Pipkin heat flux law is considered. The resulting system has been investigated by Colli and Lauren\c cot who proved existence and uniqueness results, when the time relaxation coefficient is strictly positive. The aim of this paper is the study of the asymptotic behaviour of such a solution, as the time relaxation goes to zero, and of the related limit problem.
@article{JCA_1999_6_1_JCA_1999_6_1_a3,
author = {G. Bonfanti and F. Luterotti},
title = {Asymptotic {Analysis} to a {Phase-Field} {Model} with a {Nonsmooth} {Memory} {Kernel}},
journal = {Journal of convex analysis},
pages = {41--58},
year = {1999},
volume = {6},
number = {1},
url = {http://geodesic.mathdoc.fr/item/JCA_1999_6_1_JCA_1999_6_1_a3/}
}
TY - JOUR AU - G. Bonfanti AU - F. Luterotti TI - Asymptotic Analysis to a Phase-Field Model with a Nonsmooth Memory Kernel JO - Journal of convex analysis PY - 1999 SP - 41 EP - 58 VL - 6 IS - 1 UR - http://geodesic.mathdoc.fr/item/JCA_1999_6_1_JCA_1999_6_1_a3/ ID - JCA_1999_6_1_JCA_1999_6_1_a3 ER -
G. Bonfanti; F. Luterotti. Asymptotic Analysis to a Phase-Field Model with a Nonsmooth Memory Kernel. Journal of convex analysis, Tome 6 (1999) no. 1, pp. 41-58. http://geodesic.mathdoc.fr/item/JCA_1999_6_1_JCA_1999_6_1_a3/