Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2024_26_6_a1, author = {L. M. \`Eneeva}, title = {Initial value problem for a fractional order equation with the {Gerasimov{\textendash}Caputo} derivative with involution}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {19--25}, publisher = {mathdoc}, volume = {26}, number = {6}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2024_26_6_a1/} }
TY - JOUR AU - L. M. Èneeva TI - Initial value problem for a fractional order equation with the Gerasimov–Caputo derivative with involution JO - News of the Kabardin-Balkar scientific center of RAS PY - 2024 SP - 19 EP - 25 VL - 26 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IZKAB_2024_26_6_a1/ LA - ru ID - IZKAB_2024_26_6_a1 ER -
%0 Journal Article %A L. M. Èneeva %T Initial value problem for a fractional order equation with the Gerasimov–Caputo derivative with involution %J News of the Kabardin-Balkar scientific center of RAS %D 2024 %P 19-25 %V 26 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IZKAB_2024_26_6_a1/ %G ru %F IZKAB_2024_26_6_a1
L. M. Èneeva. Initial value problem for a fractional order equation with the Gerasimov–Caputo derivative with involution. News of the Kabardin-Balkar scientific center of RAS, Tome 26 (2024) no. 6, pp. 19-25. http://geodesic.mathdoc.fr/item/IZKAB_2024_26_6_a1/
[1] A. M. Nakhushev, Fractional calculus and its application, FIZMATLIT, Moscow, 2003, 272 pp. (In Russian)
[2] L. M. Eneeva, “On the question of solving a mixed boundary value problem for an equation with fractional derivatives with different origins”, Reports of the Adyghe (Circassian) International Academy of Sciences, 23:4 (2023), 62–68 (In Russian) | DOI
[3] B. Stankovic, “An equation with left and right fractional derivatives”, Publications de l'institute math?ematique. Nouvelle serie, 80(94) (2006), 259–272 | MR | Zbl
[4] T. M. Atanackovic, B. Stankovic, “On a differential equation with left and right fractional derivatives”, Fractional Calculus and Applied Analysis, 10:2 (2007), 139–150 | MR | Zbl
[5] C. Torres, “Existence of a solution for the fractional forced pendulum”, Journal of Applied Mathematics and Computational Mechanics, 13:1 (2014), 125–142 | DOI | Zbl
[6] L. M. Eneeva, A. V. Pskhu, A. A. Potapov et al., “Lyapunov inequality for a fractional differential equation modelling damped vibrations of thin film MEMS”, Advances in Intelligent Systems and Computing. ICCD2019, 2021, ID: E19100
[7] S. Sh. Rekhviashvili, A. V. Pskhu, A. A. Potapov et al., “Modeling damped vibrations of thin film MEMS”, Advances in Intelligent Systems and Computing. ICCD2019, 2021, ID: E19101
[8] L. Eneeva, A. Pskhu, S. Rekhviashvili, “Ordinary differential equation with left and right fractional derivatives and modeling of oscillatory systems”, Mathematics, 8(12) (2020), 2122 | DOI
[9] L. M. Eneeva, “Cauchy problem for fractional order equation with involution”, Vestnik KRAUNC. Fiz. mat. nauki, 48:3 (2024), 43–55 (In Russian) | DOI