Boundary value problem for a differential-difference equation
News of the Kabardin-Balkar scientific center of RAS, Tome 26 (2024) no. 4, pp. 130-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to the study of a differential-difference equation with a fractional derivative of order not exceeding one. For the equation under consideration, a boundary value problem is posed and solved on a manifold that is a countable union of intervals. To solve the problem, we used an analogue of the Green function method, adapted for differential-difference equations. A general representation of the solution to the equation under study has been found, a fundamental solution has been constructed in terms of the Prabhakar function, its properties have been studied, and a theorem on the existence and uniqueness of a solution to the problem under study has been proven.
Keywords: fractional derivative, McKendrick – Von Foerster equation, fractional integration operator, fractional differentiation operator, differential-difference equation, Riemann – Liouville integral, difference operators, Prabhakar function, Mittag-Leffler function
@article{IZKAB_2024_26_4_a5,
     author = {L. M. Vidzizheva and D. A. Kanametova},
     title = {Boundary value problem for a differential-difference equation},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {130--144},
     publisher = {mathdoc},
     volume = {26},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2024_26_4_a5/}
}
TY  - JOUR
AU  - L. M. Vidzizheva
AU  - D. A. Kanametova
TI  - Boundary value problem for a differential-difference equation
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2024
SP  - 130
EP  - 144
VL  - 26
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2024_26_4_a5/
LA  - ru
ID  - IZKAB_2024_26_4_a5
ER  - 
%0 Journal Article
%A L. M. Vidzizheva
%A D. A. Kanametova
%T Boundary value problem for a differential-difference equation
%J News of the Kabardin-Balkar scientific center of RAS
%D 2024
%P 130-144
%V 26
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2024_26_4_a5/
%G ru
%F IZKAB_2024_26_4_a5
L. M. Vidzizheva; D. A. Kanametova. Boundary value problem for a differential-difference equation. News of the Kabardin-Balkar scientific center of RAS, Tome 26 (2024) no. 4, pp. 130-144. http://geodesic.mathdoc.fr/item/IZKAB_2024_26_4_a5/

[1] A. M. Nakhushev, Fractional calculus and its application, FIZMATLIT, Moscow, 2003., 272 pp. (In Russian)

[2] N. S. Bakhvalov, N. P. Zhidkov, G. M. Kobelkov, Numerical methods, Moscow, 2011, 636 pp. (In Russian)

[3] R. O. Kenetova, F. M. Losanova, “On a nonlocal boundary value problem for the generalized McKendrick von Forster equation”, News of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences, 2017, no. 2 (76), 49–53 (In Russian)

[4] F. M. Losanova, “About one mathematical model with the generalized McKendrick von Forster equation”, Vestnik KRAUNC. Phys. math. Sciences, 33:4 (2020), 71–77 (In Russian) | DOI

[5] F. T. Bogatyreva, “Boundary value problems for first order partial differential equations with Dzhrbashyan Nersesyan operators”, Chelyab. Phys. Math. zhur, 6:4 (2021), 403–416 (In Russian) | DOI

[6] M. A. Lavrentyev, B. V. Shabat, Methods of the theory of functions of a complex variable, FIZMATGIZ, Moscow, 1958, 749 pp. (In Russian)

[7] T. R. Prabhakar, “A singular integral equation with a generalized Mittag-Leffler function in the kernel”, Yokohama Math. J, 19 (1971), 7–15

[8] R. Garra, R. Garrappa, “The Prabhakar or three-parameter Mittag-Leffler function: theory and application”, Commun Nonlinear Sci Numer Simulat, 56 (2018), 314–329

[9] A. K. Shukla, J. C. Prajapati, “On a generalization of Mittag-Leffler function and its properties”, J. Math. Anal. Appl, 336 (2007), 797–811

[10] F. T. Bogatyreva, L. Kh. Gadzova, B. I. Efendiev, Fundamentals of fractional integration and differentiation: Methodical manual, Izdatel'stvo KBNTS RAN, Nalchik, 2020, 46 pp. (In Russian)