Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2024_26_4_a5, author = {L. M. Vidzizheva and D. A. Kanametova}, title = {Boundary value problem for a differential-difference equation}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {130--144}, publisher = {mathdoc}, volume = {26}, number = {4}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2024_26_4_a5/} }
TY - JOUR AU - L. M. Vidzizheva AU - D. A. Kanametova TI - Boundary value problem for a differential-difference equation JO - News of the Kabardin-Balkar scientific center of RAS PY - 2024 SP - 130 EP - 144 VL - 26 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IZKAB_2024_26_4_a5/ LA - ru ID - IZKAB_2024_26_4_a5 ER -
%0 Journal Article %A L. M. Vidzizheva %A D. A. Kanametova %T Boundary value problem for a differential-difference equation %J News of the Kabardin-Balkar scientific center of RAS %D 2024 %P 130-144 %V 26 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IZKAB_2024_26_4_a5/ %G ru %F IZKAB_2024_26_4_a5
L. M. Vidzizheva; D. A. Kanametova. Boundary value problem for a differential-difference equation. News of the Kabardin-Balkar scientific center of RAS, Tome 26 (2024) no. 4, pp. 130-144. http://geodesic.mathdoc.fr/item/IZKAB_2024_26_4_a5/
[1] A. M. Nakhushev, Fractional calculus and its application, FIZMATLIT, Moscow, 2003., 272 pp. (In Russian)
[2] N. S. Bakhvalov, N. P. Zhidkov, G. M. Kobelkov, Numerical methods, Moscow, 2011, 636 pp. (In Russian)
[3] R. O. Kenetova, F. M. Losanova, “On a nonlocal boundary value problem for the generalized McKendrick von Forster equation”, News of the Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences, 2017, no. 2 (76), 49–53 (In Russian)
[4] F. M. Losanova, “About one mathematical model with the generalized McKendrick von Forster equation”, Vestnik KRAUNC. Phys. math. Sciences, 33:4 (2020), 71–77 (In Russian) | DOI
[5] F. T. Bogatyreva, “Boundary value problems for first order partial differential equations with Dzhrbashyan Nersesyan operators”, Chelyab. Phys. Math. zhur, 6:4 (2021), 403–416 (In Russian) | DOI
[6] M. A. Lavrentyev, B. V. Shabat, Methods of the theory of functions of a complex variable, FIZMATGIZ, Moscow, 1958, 749 pp. (In Russian)
[7] T. R. Prabhakar, “A singular integral equation with a generalized Mittag-Leffler function in the kernel”, Yokohama Math. J, 19 (1971), 7–15
[8] R. Garra, R. Garrappa, “The Prabhakar or three-parameter Mittag-Leffler function: theory and application”, Commun Nonlinear Sci Numer Simulat, 56 (2018), 314–329
[9] A. K. Shukla, J. C. Prajapati, “On a generalization of Mittag-Leffler function and its properties”, J. Math. Anal. Appl, 336 (2007), 797–811
[10] F. T. Bogatyreva, L. Kh. Gadzova, B. I. Efendiev, Fundamentals of fractional integration and differentiation: Methodical manual, Izdatel'stvo KBNTS RAN, Nalchik, 2020, 46 pp. (In Russian)