Economic and mathematical modeling
News of the Kabardin-Balkar scientific center of RAS, no. 6 (2023), pp. 282-289.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the construction of production functions using the methods of the theory of fractional derivatives used to assess environmental pollution factors, taking into account the totality of global environmental and economic challenges. When constructing the economic and mathematical model under study, two main criteria of a green economy are taken into account: ensuring the preservation of the environment and improving the quality of life of the population. For the first time, when modeling such problems, instead of the classical objective function, the model uses a two-factor Cobb–Douglas production function of a special type, taking into account the fractal nature of the environmental space. The work proves that the model can be reduced to a differential equation with a fractional derivative of the Caputo type, which has a regular solution for certain values of the coefficients and exponents of the production function.
Keywords: Cobb–Douglas function, environmental pollution, Caputo derivative, modeling, greeneconomy, Riemann–Liouville fractional derivative operator
@article{IZKAB_2023_6_a24,
     author = {S. I. Shagin and A. G. Ezaova},
     title = {Economic and mathematical modeling},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {282--289},
     publisher = {mathdoc},
     number = {6},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2023_6_a24/}
}
TY  - JOUR
AU  - S. I. Shagin
AU  - A. G. Ezaova
TI  - Economic and mathematical modeling
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2023
SP  - 282
EP  - 289
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2023_6_a24/
LA  - ru
ID  - IZKAB_2023_6_a24
ER  - 
%0 Journal Article
%A S. I. Shagin
%A A. G. Ezaova
%T Economic and mathematical modeling
%J News of the Kabardin-Balkar scientific center of RAS
%D 2023
%P 282-289
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2023_6_a24/
%G ru
%F IZKAB_2023_6_a24
S. I. Shagin; A. G. Ezaova. Economic and mathematical modeling. News of the Kabardin-Balkar scientific center of RAS, no. 6 (2023), pp. 282-289. http://geodesic.mathdoc.fr/item/IZKAB_2023_6_a24/

[1] A. M. Nakhushev, Fractional calculus and its application, FIZMATLIT, Moscow, 2003, 272 pp. (In Russian)

[2] A. M. Nakhushev, Equations of mathematical biology, Higher school, Moscow, 1995, 301 pp. (In Russian)

[3] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integrals and derivatives of fractional order and some of their applications, Science and Technology, Minsk, 1987, 688 pp. (In Russian)

[4] N. N. Lebedev, Special functions and their applications, Moscow-Leningrad, 1953, 379 pp. (In Russian)

[5] G. B. Kleiner, Production functions: Theory, methods, application, Finance and Statistics, Moscow, 1986 (In Russian)

[6] V. K. Gorbunov, Production functions: theory and construction, Ulyanovsk, 2013, 85 pp. (In Russian)

[7] S. A. Ashmanov, Mathematical methods and models in economics, MSU, Moscow, 1980, 199 pp. (In Russian)