Linear-quadratic control of aircraft group
News of the Kabardin-Balkar scientific center of RAS, no. 2 (2019), pp. 5-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

Today, there are a large number of tasks that can not be performed by a single unmanned aerial vehicle. In this case, the use of a group of unmanned aerial vehicles is a good solution. These tasks include the task of mapping the area, work in the field of technogenous (human-caused) or natural disasters, monitoring and processing of agricultural land, the study in real time remote areas. In terms of a megapolis a group of aircraft can be used to create panoramic views, and tracking the dynamics of traffic jams. A group of unmanned aerial vehicles can be used for express cargo transportation, a group of unmanned aerial vehicles can be used in mineral exploration tasks. In this paper we consider the problem of joint movement of several unmanned aerial vehicles based on rigid links. The method of linear-quadratic regulation is applied. The movement of a group of drones is modeled by the method of leader-follower and the method of RD control with linear – quadratic regulation is applied. An algorithm for constructing an optimal control system for a tightly coupled group of quadcopters is developed. To solve the problem it is proposed to use the method of linear-quadratic regulation. The mathematical model of the system of quadcopters with rigid connection is constructed. The graphs show the results of modeling the system of rigid-coupled quadcopters.
Keywords: unmanned aerial vehicle, linear-quadratic regulation, quadcopter (quadrotor), moving coordinate system
Mots-clés : Euler angles, moment of inertia.
@article{IZKAB_2019_2_a0,
     author = {D. L. Vinokursky and N. V. Kononova and L. A. Lyutikova and S. A. Makhocheva and M. M. Kandrokova},
     title = {Linear-quadratic control of aircraft group},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {5--10},
     publisher = {mathdoc},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2019_2_a0/}
}
TY  - JOUR
AU  - D. L. Vinokursky
AU  - N. V. Kononova
AU  - L. A. Lyutikova
AU  - S. A. Makhocheva
AU  - M. M. Kandrokova
TI  - Linear-quadratic control of aircraft group
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2019
SP  - 5
EP  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2019_2_a0/
LA  - ru
ID  - IZKAB_2019_2_a0
ER  - 
%0 Journal Article
%A D. L. Vinokursky
%A N. V. Kononova
%A L. A. Lyutikova
%A S. A. Makhocheva
%A M. M. Kandrokova
%T Linear-quadratic control of aircraft group
%J News of the Kabardin-Balkar scientific center of RAS
%D 2019
%P 5-10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2019_2_a0/
%G ru
%F IZKAB_2019_2_a0
D. L. Vinokursky; N. V. Kononova; L. A. Lyutikova; S. A. Makhocheva; M. M. Kandrokova. Linear-quadratic control of aircraft group. News of the Kabardin-Balkar scientific center of RAS, no. 2 (2019), pp. 5-10. http://geodesic.mathdoc.fr/item/IZKAB_2019_2_a0/

[1] V. Roldao, R. Cunha, D. Cabecinhas, P. Oliveira, C. Silvestre, European Control Conference (ECC), 2013

[2] Hiroaki Yamaguchi, “A distributed motion coordination strategy for multiple non-holonomic mobile robots in cooperative hunting operations”, Robotics and Autonomous Systems, 282:43(4):257 (2003)

[3] James G. Bellingham, Kanna Rajan, “Robotics in remote and hostile environments”, Science, 2007, no. 318(5853), 1098–1102

[4] Jonathan Fink, Nathan Michael, Soonkyum Kim, Vijay Kumar, “Planning and control for cooperative manipulation and transportation with aerial robots”, The International Journal of Robotics Research, 2011, no. 30(3), March

[5] T. H. Summers, Changbin Yu, Brian D. O. Anderson, CDC 2008, Decision and Control, 2008 | MR

[6] Silvia Mastellone, Dusan M. Stipanovic, Christopher R. Graunke, Koji A. Intlekoferand Mark W. Spong, “Formation control and collision avoidance for multi-agent nonholonomic sys-tems: Theory and experiments”, I. J. Robotic Res., 2008, no. 27(1), 107–126

[7] Rongxin Cui, Shuzhi Sam Ge, Bernard VoonEe How, Yoo Sang Choo, “Leader-follower formation control of underactuated autonomous underwater vehicles”, Ocean Engineering, 2010, no. 37(17-18), 1491-1502

[8] Zhaoxia Peng, Guoguang Wen, Ahmed Rahmani, Yu. Yongguang, “Leader-follower formation control of nonholonomic mobile robots based on a bioinspired neurodynamic based approach”, Robotics and Autonomous Systems, 2013, June

[9] G. L. Mariottini, F. Morbidi, D. Prattichizzo, G. J. Pappas, K. Daniilidis, IEEE International Conference, Robotics and Automation, 2007

[10] Andrew J. Hanson, Ma. Hui, Parallel transport approach to curve framing, Technical report, 1995

[11] L. Consolini, F. Morbidi, D. Prattichizzo, M. Tosques, IEEE, Transactions on, Automatic Control, no. 57(4), 2012 | DOI | MR | Zbl

[12] L. Consolini, F. Morbidi, D. Prattichizzo, M. Tosques, IEEE Transactions, Robotics, no. 25(5), 2009

[13] Eric W Justh, PS Krishnaprasad, “Equilibria and steering laws for planar formations”, Systems Control Letters, 2004, no. 52(1), 25-38 | MR

[14] D. Mellinger, M. Shomin, N. Michael, V. Kumar, Cooperative grasping and transport using multiple quadrotors. Distributed autonomous robotic systems, Springer, Berlin, Heidelberg, 2013