Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2018_6-2_a13, author = {A. U. Zammoev and R. N. Abutalipov}, title = {Catalytic self-propelled nanomotors}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {149--156}, publisher = {mathdoc}, number = {6-2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2018_6-2_a13/} }
A. U. Zammoev; R. N. Abutalipov. Catalytic self-propelled nanomotors. News of the Kabardin-Balkar scientific center of RAS, no. 6-2 (2018), pp. 149-156. http://geodesic.mathdoc.fr/item/IZKAB_2018_6-2_a13/
[1] R. Ballardini, Balzani V, Credi A, Gandolfi MT, M. Venturi, “Artificial Molecular-Level Machines: Which Energy To Make Them Work?”, Acc. Chem. Res, 34 (6) (2001), 445–455 | DOI
[2] J. Burdick, Laocharoensuk, R., P. M. Wheat, J. D. Posner, J. Wang, “Synthetic nanomotors in microchannel networks: directional microchip motion and controlled manipulation of cargo”, J. Am. Chem. Soc, 130 (2008), 8164–8165 | DOI
[3] P. de Buyl, R. Kapral, “Phoretic self-propulsion: a mesoscopic description of reaction dynamics that powers motion”, Nanoscale, 2013 | DOI
[4] Erbas-Cakmak Sundus, A. Leigh David, McTernan, T. Charlie, L. Nussbaumer Alina, “Artificial Molecular Machines”, Chemical Reviews, 115 (2015), 10081–10206 | DOI
[5] S. Fournier-Bidoz, A. C. Arsenault, I. Manners, G. A. Ozin, “Synthetic self-propelled nanorotors”, Chem. Commun, 4 (2005), 441–443 | DOI
[6] J. G. Gibbs, Y. Zhao, “Catalytic nanomotors: fabrication, mechanism, and applications”, Front. Mater. Sci, 5 (2011), 25–39 | DOI
[7] J. G. Gibbs, Y. P. Zhao, “Autonomously motile catalytic nanomotors by bubble propulsion”, Appl. Phys. Lett, 94 (2009), 163104–163107 | DOI
[8] R. Golestanian, T. B. Liverpool, Ajdar, A., “Propulsion of a molecular machine by asymmetric distribution of reaction products”, Phys. Rev. Lett., 94 (2005), 220801 | DOI
[9] J. R. Howse, R. A. Jones, A. J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, “Self-motile colloidal particles: from directed propulsion to random walk”, Phys. Rev. Lett., 99:4 (2007), 4 pp. | DOI
[10] R. F. Ismagilov, Schwart, A., N. Bowden, G. M. Whitesides, “Autonomous movement and self-assembly”, Angew. Chem. Int. Ed, 41 (2002), 652–654 | 3.0.CO;2-U class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[11] T. R. Kline, W. F. Paxton, T. E. Mallouk, A. Sen, “Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods”, Angew. Chem. Int. Ed, 44 (2005), 744–746 | DOI
[12] J. C. Love, B. D. Gates, D. B. Wolfe, K. E. Paul, Whitesides, G. M., “Fabrication and wetting properties of metallic half-shells with submicron diameters”, Nano Lett, 2 (2002), 891–894 | DOI
[13] T. E. Mallouk, A. Sen, “Powering nanorobots”, Sci. Am, 300 (2009), 72–77 | DOI
[14] Manjare M. Yang, B., Y. P. Zhao, “Bubble driven quasioscillatory translational motion of catalytic micromotors”, Phys. Rev. Lett., 109 (2012) | DOI
[15] Y. Mei, A. A. Solovev, S. Sanchez, Schmid, O. G., “Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines”, Chem. Soc. Rev, 40 (2011), 2109–2119 | DOI
[16] G. A. Ozin, I. Manners, S. Fournier-Bidoz, A. Arsenault, “Dream nanomachines”, Adv. Mater, 17 (2005), 3011–3018 | DOI
[17] W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St Angelo, Y. Y. Cao, T. E. Mallouk, P. E. Lammert, Crespi, V. H., “Catalytic nanomotors: autonomous movement of striped nanorods”, J. Am. Chem. Soc, 126 (2004), 13424–13431 | DOI
[18] W. F. Paxton, S. Sundararajan, T. E. Mallouk, A. Sen, “Chemical locomotion”, Angew. Chem. Int. Ed, 45 (2006a), 5420–5429 | DOI
[19] W. F. Paxton, P. T. Baker, T. R. Kline, Y. Wang, Mallouk T.E, A. Sen, “Catalytically induced electrokinetics for motors and micropumps”, J. Am. Chem. Soc, 128 (2006b), 14881–14888 | DOI
[20] M. Pumera, “Electrochemically powered self-propelled electrophoretic nanosubmarines”, Nanoscale, 2, 1643–1649 | DOI
[21] Rodríguez-Fern\;andez, D. and L. M. Liz-Marzán, “Metallic Janus and patchy particle”, Part. Part. Syst. Charact, 30 (2010), 46–60 | DOI
[22] A. Sen, M. Ibele, Y. Hong, D. Velegol, “Chemo and phototactic nano/ microbots”, Faraday Discuss, 143 (2009), 15–27 | DOI
[23] S. Sengupta, M. E. Ibele, A. Sen, “Fantastic voyage: designing self-powered nano-robots”, Angew. Chem. Int. Ed Engl, 51 (2012), 8434–8445 | DOI
[24] A. Solovev, Y. Mei, E. Bermdez, G. Huang, O. Schmidt, “Catalytic microtubular jet engines self-propelled by accumulated gas bubbles”, Small, 5 (2009), 1688–1692 | DOI
[25] J. Wang, “Can man-made nanomachines compete with nature biomotors?”, ACS Nano, 3 (2009), 4–9 | DOI
[26] J. Wang, Nanomachines: Fundamentals and Applications, Wiley, 2013, 174 pp.
[27] D. A. van Nijs B. Wilson, A. van Blaaderen, R. J.M. Nolte, J. C.M. van Hest, “Fuel con-centration dependent movement of supramolecular catalytic nanomotors”, Nanoscale, 5 (2013), 1315-1318 | DOI
[28] R. N. Abutalipov, A. U. Zammoev, Z. V. Nagoev Z.V., “Bionanorobototekhnika: kontseptualizatsiya, problematika i zadachi issledovanii”, Izvestiya Kabardino-Balkarskogo nauchnogo tsentra RAN, 2016, no. 6 (74), 11–17
[29] R. N. Abutalipov, A. U. Zammoev, “Domennaya model kognitivnoi infokommunikatsionnoi sistemy dlya intellektualnogo meditsinskogo onlain-servisa na baze bionanosensornykh ustroistv”, Slavyanskii forum, 1(19) (2018), 104–113
[30] Yu. V. Poduraev, Mekhatronika: osnovy, metody, primenenie, ucheb, posobie dlya studentov vuzov, 2-e izd., ster., Mashinostroenie, M., 2007, 256 pp.
[31] E. D. Teryaev, N. B. Filimonov, “Nanomekhatronika: sostoyanie, problemy, perspektivy”, Izvestiya Kabardino-Balkarskogo nauchnogo tsentra RAN, 2010, no. 1 (33), 2–15