Catalytic self-propelled nanomotors
News of the Kabardin-Balkar scientific center of RAS, no. 6-2 (2018), pp. 149-156.

Voir la notice de l'article provenant de la source Math-Net.Ru

To solve applied problems of bionanorobotics, one needs an element base of nanomechatronic devices and systems consisting of nanostructured components with the necessary functional properties. The paper discusses the properties of synthetic catalytic self-propelled nanomotors (CSPNM) and evaluates their applicability in nanomechatronics. The compliance of CSPNM with the mechatronics paradigm on the signs “effort, movement, signal” is established and they are proposed to be used to implement the low level of bionanorobotic cognitive information and communication system (CICS) for the microscale, the fabricator of the starting configuration of the basic bionanorobotic technological cycle.
Keywords: bionanorobotics, nanomechatronics, nanodevice, nanomachine, molecular machines, nanomotors, catalytic self-propelled nanomotors, cognitive information and communication system, laboratory on a chip, fabricator.
Mots-clés : element base
@article{IZKAB_2018_6-2_a13,
     author = {A. U. Zammoev and R. N. Abutalipov},
     title = {Catalytic self-propelled nanomotors},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {149--156},
     publisher = {mathdoc},
     number = {6-2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2018_6-2_a13/}
}
TY  - JOUR
AU  - A. U. Zammoev
AU  - R. N. Abutalipov
TI  - Catalytic self-propelled nanomotors
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2018
SP  - 149
EP  - 156
IS  - 6-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2018_6-2_a13/
LA  - ru
ID  - IZKAB_2018_6-2_a13
ER  - 
%0 Journal Article
%A A. U. Zammoev
%A R. N. Abutalipov
%T Catalytic self-propelled nanomotors
%J News of the Kabardin-Balkar scientific center of RAS
%D 2018
%P 149-156
%N 6-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2018_6-2_a13/
%G ru
%F IZKAB_2018_6-2_a13
A. U. Zammoev; R. N. Abutalipov. Catalytic self-propelled nanomotors. News of the Kabardin-Balkar scientific center of RAS, no. 6-2 (2018), pp. 149-156. http://geodesic.mathdoc.fr/item/IZKAB_2018_6-2_a13/

[1] R. Ballardini, Balzani V, Credi A, Gandolfi MT, M. Venturi, “Artificial Molecular-Level Machines: Which Energy To Make Them Work?”, Acc. Chem. Res, 34 (6) (2001), 445–455 | DOI

[2] J. Burdick, Laocharoensuk, R., P. M. Wheat, J. D. Posner, J. Wang, “Synthetic nanomotors in microchannel networks: directional microchip motion and controlled manipulation of cargo”, J. Am. Chem. Soc, 130 (2008), 8164–8165 | DOI

[3] P. de Buyl, R. Kapral, “Phoretic self-propulsion: a mesoscopic description of reaction dynamics that powers motion”, Nanoscale, 2013 | DOI

[4] Erbas-Cakmak Sundus, A. Leigh David, McTernan, T. Charlie, L. Nussbaumer Alina, “Artificial Molecular Machines”, Chemical Reviews, 115 (2015), 10081–10206 | DOI

[5] S. Fournier-Bidoz, A. C. Arsenault, I. Manners, G. A. Ozin, “Synthetic self-propelled nanorotors”, Chem. Commun, 4 (2005), 441–443 | DOI

[6] J. G. Gibbs, Y. Zhao, “Catalytic nanomotors: fabrication, mechanism, and applications”, Front. Mater. Sci, 5 (2011), 25–39 | DOI

[7] J. G. Gibbs, Y. P. Zhao, “Autonomously motile catalytic nanomotors by bubble propulsion”, Appl. Phys. Lett, 94 (2009), 163104–163107 | DOI

[8] R. Golestanian, T. B. Liverpool, Ajdar, A., “Propulsion of a molecular machine by asymmetric distribution of reaction products”, Phys. Rev. Lett., 94 (2005), 220801 | DOI

[9] J. R. Howse, R. A. Jones, A. J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, “Self-motile colloidal particles: from directed propulsion to random walk”, Phys. Rev. Lett., 99:4 (2007), 4 pp. | DOI

[10] R. F. Ismagilov, Schwart, A., N. Bowden, G. M. Whitesides, “Autonomous movement and self-assembly”, Angew. Chem. Int. Ed, 41 (2002), 652–654 | 3.0.CO;2-U class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[11] T. R. Kline, W. F. Paxton, T. E. Mallouk, A. Sen, “Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods”, Angew. Chem. Int. Ed, 44 (2005), 744–746 | DOI

[12] J. C. Love, B. D. Gates, D. B. Wolfe, K. E. Paul, Whitesides, G. M., “Fabrication and wetting properties of metallic half-shells with submicron diameters”, Nano Lett, 2 (2002), 891–894 | DOI

[13] T. E. Mallouk, A. Sen, “Powering nanorobots”, Sci. Am, 300 (2009), 72–77 | DOI

[14] Manjare M. Yang, B., Y. P. Zhao, “Bubble driven quasioscillatory translational motion of catalytic micromotors”, Phys. Rev. Lett., 109 (2012) | DOI

[15] Y. Mei, A. A. Solovev, S. Sanchez, Schmid, O. G., “Rolled-up nanotech on polymers: from basic perception to self-propelled catalytic microengines”, Chem. Soc. Rev, 40 (2011), 2109–2119 | DOI

[16] G. A. Ozin, I. Manners, S. Fournier-Bidoz, A. Arsenault, “Dream nanomachines”, Adv. Mater, 17 (2005), 3011–3018 | DOI

[17] W. F. Paxton, K. C. Kistler, C. C. Olmeda, A. Sen, S. K. St Angelo, Y. Y. Cao, T. E. Mallouk, P. E. Lammert, Crespi, V. H., “Catalytic nanomotors: autonomous movement of striped nanorods”, J. Am. Chem. Soc, 126 (2004), 13424–13431 | DOI

[18] W. F. Paxton, S. Sundararajan, T. E. Mallouk, A. Sen, “Chemical locomotion”, Angew. Chem. Int. Ed, 45 (2006a), 5420–5429 | DOI

[19] W. F. Paxton, P. T. Baker, T. R. Kline, Y. Wang, Mallouk T.E, A. Sen, “Catalytically induced electrokinetics for motors and micropumps”, J. Am. Chem. Soc, 128 (2006b), 14881–14888 | DOI

[20] M. Pumera, “Electrochemically powered self-propelled electrophoretic nanosubmarines”, Nanoscale, 2, 1643–1649 | DOI

[21] Rodríguez-Fern\;andez, D. and L. M. Liz-Marzán, “Metallic Janus and patchy particle”, Part. Part. Syst. Charact, 30 (2010), 46–60 | DOI

[22] A. Sen, M. Ibele, Y. Hong, D. Velegol, “Chemo and phototactic nano/ microbots”, Faraday Discuss, 143 (2009), 15–27 | DOI

[23] S. Sengupta, M. E. Ibele, A. Sen, “Fantastic voyage: designing self-powered nano-robots”, Angew. Chem. Int. Ed Engl, 51 (2012), 8434–8445 | DOI

[24] A. Solovev, Y. Mei, E. Bermdez, G. Huang, O. Schmidt, “Catalytic microtubular jet engines self-propelled by accumulated gas bubbles”, Small, 5 (2009), 1688–1692 | DOI

[25] J. Wang, “Can man-made nanomachines compete with nature biomotors?”, ACS Nano, 3 (2009), 4–9 | DOI

[26] J. Wang, Nanomachines: Fundamentals and Applications, Wiley, 2013, 174 pp.

[27] D. A. van Nijs B. Wilson, A. van Blaaderen, R. J.M. Nolte, J. C.M. van Hest, “Fuel con-centration dependent movement of supramolecular catalytic nanomotors”, Nanoscale, 5 (2013), 1315-1318 | DOI

[28] R. N. Abutalipov, A. U. Zammoev, Z. V. Nagoev Z.V., “Bionanorobototekhnika: kontseptualizatsiya, problematika i zadachi issledovanii”, Izvestiya Kabardino-Balkarskogo nauchnogo tsentra RAN, 2016, no. 6 (74), 11–17

[29] R. N. Abutalipov, A. U. Zammoev, “Domennaya model kognitivnoi infokommunikatsionnoi sistemy dlya intellektualnogo meditsinskogo onlain-servisa na baze bionanosensornykh ustroistv”, Slavyanskii forum, 1(19) (2018), 104–113

[30] Yu. V. Poduraev, Mekhatronika: osnovy, metody, primenenie, ucheb, posobie dlya studentov vuzov, 2-e izd., ster., Mashinostroenie, M., 2007, 256 pp.

[31] E. D. Teryaev, N. B. Filimonov, “Nanomekhatronika: sostoyanie, problemy, perspektivy”, Izvestiya Kabardino-Balkarskogo nauchnogo tsentra RAN, 2010, no. 1 (33), 2–15