On the fundamental solution of an ordinary
News of the Kabardin-Balkar scientific center of RAS, no. 6-1 (2018), pp. 48-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study an ordinary differential equation with a continuous distributed differentiation operator. Fractional differentiation is understood in the sense of Riemann–Liouville. For the equation under consideration, a fundamental solution is constructed and the Cauchy problem is written in explicit form.
Keywords: fundamental solution, Cauchy problem, continuous distributed differentiation operator, Riemann–Liouville fractional differentiation operator.
@article{IZKAB_2018_6-1_a7,
     author = {B. I. Efendiev},
     title = {On the fundamental solution of an ordinary},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {48--52},
     publisher = {mathdoc},
     number = {6-1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2018_6-1_a7/}
}
TY  - JOUR
AU  - B. I. Efendiev
TI  - On the fundamental solution of an ordinary
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2018
SP  - 48
EP  - 52
IS  - 6-1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2018_6-1_a7/
LA  - ru
ID  - IZKAB_2018_6-1_a7
ER  - 
%0 Journal Article
%A B. I. Efendiev
%T On the fundamental solution of an ordinary
%J News of the Kabardin-Balkar scientific center of RAS
%D 2018
%P 48-52
%N 6-1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2018_6-1_a7/
%G ru
%F IZKAB_2018_6-1_a7
B. I. Efendiev. On the fundamental solution of an ordinary. News of the Kabardin-Balkar scientific center of RAS, no. 6-1 (2018), pp. 48-52. http://geodesic.mathdoc.fr/item/IZKAB_2018_6-1_a7/

[1] A. M. Nakhushev, “O nepreryvnykh differentsialnykh uravneniyakh i ikh raznostnykh analogakh”, Dokl. AN SSSR, 300:4 (1988), 796–799 | MR | Zbl

[2] A. M. Nakhushev, “O polozhitelnosti operatorov nepreryvnogo i diskretnogo differentsirovaniya i integrirovaniya vesma vazhnykh v drobnom ischislenii i v teorii uravnenii smeshannogo tipa”, Differents. uravneniya, 34:1 (1998), 101–109 | MR | Zbl

[3] A. M. Nakhushev, Uravneniya matematicheskoi biologii dlya universitetov, ucheb. posobie, Vysshaya shkola., M., 1995, 301 pp.

[4] V. Volterra, Teoriya funktsionalov integralnykh i integro-differentsialnykh uravnenii, Nauka, M., 1982

[5] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.

[6] A. V. Pskhu, Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005, 199 pp.

[7] A. N. Kochubei, “Distributed order calculus and equations of ultraslow diffusion”, J. Math. Anal. Appl, 340 (2008), 252–281 | DOI | MR | Zbl

[8] Yu. Luchko, “Boundary value problems for the generalized time-fractional diffusion equation of distributed order”, Fract. Calc. Appl. Anal, 12 (2009), 409–422 | MR | Zbl

[9] A. V. Pskhu, “Fundamentalnoe reshenie obyknovennogo differentsialnogo uravneniya kontinualnogo poryadka”, Dokl. Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 9:1 (2007), 73–78