To the question of solvability of the Cauchy problem for one loaded hyperbolic equation of the second order
News of the Kabardin-Balkar scientific center of RAS, no. 6-1 (2018), pp. 5-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the object of study is a one-dimensional loaded wave equation with a load propagating along one of its characteristics. For it, the Cauchy problem with data on one of the characteristics is posed and its unambiguous solvability is proved. It is shown, that the characteristics of this equation as Cauchy data carriers are unequal. The areas of dependence, influence and definition of initial data, which are set on the characteristic y=x, are described.
Keywords: cauchy's task, the wave equation, the loaded equation.
@article{IZKAB_2018_6-1_a0,
     author = {A. H. Attaev},
     title = {To the question of solvability of the {Cauchy} problem for one loaded hyperbolic equation of the second order},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {5--9},
     publisher = {mathdoc},
     number = {6-1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2018_6-1_a0/}
}
TY  - JOUR
AU  - A. H. Attaev
TI  - To the question of solvability of the Cauchy problem for one loaded hyperbolic equation of the second order
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2018
SP  - 5
EP  - 9
IS  - 6-1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2018_6-1_a0/
LA  - ru
ID  - IZKAB_2018_6-1_a0
ER  - 
%0 Journal Article
%A A. H. Attaev
%T To the question of solvability of the Cauchy problem for one loaded hyperbolic equation of the second order
%J News of the Kabardin-Balkar scientific center of RAS
%D 2018
%P 5-9
%N 6-1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2018_6-1_a0/
%G ru
%F IZKAB_2018_6-1_a0
A. H. Attaev. To the question of solvability of the Cauchy problem for one loaded hyperbolic equation of the second order. News of the Kabardin-Balkar scientific center of RAS, no. 6-1 (2018), pp. 5-9. http://geodesic.mathdoc.fr/item/IZKAB_2018_6-1_a0/

[1] A. M. Nakhushev, “O zadache Darbu dlya odnogo vyrozhdayuschegosya nagruzhennogo uravneniya vtorogo poryadka”, Differents. uravneniya, 12:1 (1976), 103–108 | MR | Zbl

[2] A. M. Nakhushev, Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995, 205 pp.

[3] A. M. Nakhushev, Nagruzhennye uravneniya i ikh primenenie, Nauka, M., 2012, 232 pp.

[4] M. T. Dzhenaliev, M. I. Ramazanov, Nagruzhennye uravneniya kak vozmuschenie differentsialnykh uravnenii, Fylym, Almaty, 2010, 336 pp.

[5] A. M. Nakhushev, “O nelokalnykh kraevykh zadachakh so smescheniem i ikh svyazi s nagruzhennymi uravneniyami”, Differents. uravneniya, 21:1 (1985), 92–102 | MR

[6] M. V. Kaziev, “Zadacha Gursa dlya odnogo nagruzhennogo integro-differentsialnogo uravneniya”, Differents. uravneniya, 17:2 (1981), 313–319 | MR | Zbl

[7] I. S. Lomov, “Nagruzhennye differentsialnye operatory: skhodimost spektralnykh razlozhenii”, Differents. uravneniya, 19:1 (1983), 86–94 | MR

[8] E. N. Ogorodnikov, “Nekotorye kharakteristicheskie zadachi dlya sistem nagruzhennykh differentsialnykh uravnenii i ikh svyaz s nelokalnymi kraevymi zadachami”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz. mat. nauki, 2003, no. 19, 22–28

[9] E. N. Ogorodnikov, “Korrektnost zadachi Koshi-Gursa dlya sistemy vyrozhdayuschikhsya nagruzhennykh giperbolicheskikh uravnenii v nekotorykh spetsialnykh sluchayakh i ee ravnosilnost zadacham s nelokalnymi kraevymi usloviyami”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz. mat. nauki, 2004, no. 26, 26–38

[10] A. Kh. Attaev, “Kharakteristicheskaya zadacha Koshi dlya lineinogo nagruzhennogo giperbolicheskogo uravneniya”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 12:1 (2010), 9–10

[11] O. A. Repin, A. V. Tarasenko, “Zadacha Gursa i Darbu dlya odnogo nagruzhennogo integro-differentsialnogo uravneniya vtorogo poryadka”, Matematicheskii zhurnal, 11:2 (2011), 64–72, Almaty | MR

[12] A. Kh. Attaev, “Zadacha s dannymi na parallelnykh kharakteristikakh dlya nagruzhennogo volnovogo uravneniya”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 15:2 (2013), 25–28

[13] A. Kh. Attaev, “Zadacha Gursa dlya nagruzhennogo giperbolicheskogo uravneniya”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 16:3 (2014), 9–12

[14] A. Kh. Attaev, “Kraevye zadachi dlya nagruzhennogo volnovogo uravneniya”, Vestnik Karagandinskogo universiteta. Seriya «Matematika», 2017, no. 2 (86), 8–13

[15] A. M. Krall, “Differential-boundary operators”, Trans. Amer. Math. Soc, 154 (1971), 429–458 | DOI | MR | Zbl

[16] A. V. Bitsadze, Uravneniya matematicheskoi fiziki, Nauka, M., 1982, 336 pp.