A priori estimates of solutions of nonlocal
News of the Kabardin-Balkar scientific center of RAS, no. 5 (2018), pp. 50-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

Nonlocal boundary value problems for the third-order equation with a fractional Caputo derivative in time are considered. A priori estimates of the solution of the analogue of the first and second boundary value problems with the integral Samarsky condition for the equation with multiple characteristics are obtained by the method of energy inequalities.
Keywords: a Priori estimate of the boundary-value problems, equations with multiple characteristics, method of energy integral, fractional derivative according to Caputo, the Samarsky conditions.
@article{IZKAB_2018_5_a6,
     author = {A. M. Shkhagapsoev},
     title = {A priori estimates of solutions of nonlocal},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {50--55},
     publisher = {mathdoc},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2018_5_a6/}
}
TY  - JOUR
AU  - A. M. Shkhagapsoev
TI  - A priori estimates of solutions of nonlocal
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2018
SP  - 50
EP  - 55
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2018_5_a6/
LA  - ru
ID  - IZKAB_2018_5_a6
ER  - 
%0 Journal Article
%A A. M. Shkhagapsoev
%T A priori estimates of solutions of nonlocal
%J News of the Kabardin-Balkar scientific center of RAS
%D 2018
%P 50-55
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2018_5_a6/
%G ru
%F IZKAB_2018_5_a6
A. M. Shkhagapsoev. A priori estimates of solutions of nonlocal. News of the Kabardin-Balkar scientific center of RAS, no. 5 (2018), pp. 50-55. http://geodesic.mathdoc.fr/item/IZKAB_2018_5_a6/

[1] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.

[2] H. Block, “Sur les equations lineaires aux derivees partielles a carateristiques multiples”, Ark. mat., astron., fys, 7:13 (1912), 1–34

[3] E. Del Vecchio, “Sulle equazioni $Z\_xxx-Z\_y+\phi \_1 (x,y)=0, Z\_xxx-Z\_yy+\phi \_2 (x,y)=0$”, Mem. Real acad. cienc. Torino. Ser. 2, 66 (1915), 1–41 | Zbl

[4] E. Del Vecchio, “Sulle deux problems d'integration pour las equazions paraboliques $Z\_xxx-Z\_y=0,Z\_xxx-Z\_yy=0$”, Ark. mat., astron., fys, 11 (1916), 32–43

[5] L. Cattabriga, “Potenziali di linea e di dominio per equazioni non paraboliche in due variabili a caratteristiche multiple”, Rend. Semin.mat. Univ. Padova, 1961, no. 31, 1–45 | MR | Zbl

[6] L. Cattabriga, “Un problema al kontorno per una equazione di ordine dispary”, Analli della scuola normale superior di pisa fis e mat, 13:2 (1959), 163–169 | MR

[7] T. D. Dzhuraev, Kraevye zadachi dlya uravnenii smeshannogo i smeshanno-sostavnogo tipov, FAN, Tashkent, 1979, 236 pp.

[8] A. M. Shkhagapsoev, “Apriornaya otsenka zadachi Kattabriga dlya obobschennogo uravneniya tretego poryadka s kratnymi kharakteristikami”, Vestnik KRAUNTs. Fiz. mat. nauki, 2016, no. 1 (12) | Zbl

[9] A. M. Shkhagapsoev, “Apriornye otsenki resheniya kraevykh zadach dlya obobschennogo uravneniya tretego poryadka s kratnymi kharakteristikami”, Izvestiya KBNTs RAN, 2016, no. 6 (74), 96–101

[10] Caputo M., Elasticita e Dissipazione, Zanichelli, Bologna, 1969

[11] Alikhanov A.A., “Apriornye otsenki reshenii kraevykh zadach dlya uravnenii drobnogo poryadka”, Differents. uravneniya, 46:5 (2010), 658-664 | MR | Zbl