On usage of the loaded equations in modeling of
News of the Kabardin-Balkar scientific center of RAS, no. 5 (2018), pp. 44-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

As part of the development of mathematical methods modeling of nonlinear features of groundwater dynamics in porous media with a complex structure of the pore space the problem of approximation of the nonlinear evolution equation of filtration by the loaded equation is studied, taking into account the relationship between the geometric and dynamic characteristics of the natural system.
Keywords: nonlinear equation, approximation, loaded equation, nonlocal condition, boundary value problem.
Mots-clés : fractal structure
@article{IZKAB_2018_5_a5,
     author = {L. I. Serbina},
     title = {On usage of the loaded equations in modeling of},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {44--49},
     publisher = {mathdoc},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2018_5_a5/}
}
TY  - JOUR
AU  - L. I. Serbina
TI  - On usage of the loaded equations in modeling of
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2018
SP  - 44
EP  - 49
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2018_5_a5/
LA  - ru
ID  - IZKAB_2018_5_a5
ER  - 
%0 Journal Article
%A L. I. Serbina
%T On usage of the loaded equations in modeling of
%J News of the Kabardin-Balkar scientific center of RAS
%D 2018
%P 44-49
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2018_5_a5/
%G ru
%F IZKAB_2018_5_a5
L. I. Serbina. On usage of the loaded equations in modeling of. News of the Kabardin-Balkar scientific center of RAS, no. 5 (2018), pp. 44-49. http://geodesic.mathdoc.fr/item/IZKAB_2018_5_a5/

[1] A. M. Nakhushev, Nagruzhennye uravneniya i ikh prilozheniya, Nauka, M., 2012, 231 pp.

[2] T. Ya. Polubarinova-Kochina, Teoriya dvizheniya gruntovykh vod., Izd. 2-e, Nauka, M., 1977, 64 pp. | MR

[3] L. I. Serbina, Nelokalnye matematicheskie modeli perenosa v vodonosnykh sistemakh, Nauka, M., 2007, 167 pp.