On usage of the loaded equations in modeling of
News of the Kabardin-Balkar scientific center of RAS, no. 5 (2018), pp. 44-49
Cet article a éte moissonné depuis la source Math-Net.Ru
As part of the development of mathematical methods modeling of nonlinear features of groundwater dynamics in porous media with a complex structure of the pore space the problem of approximation of the nonlinear evolution equation of filtration by the loaded equation is studied, taking into account the relationship between the geometric and dynamic characteristics of the natural system.
Keywords:
nonlinear equation, approximation, loaded equation, boundary value problem.
Mots-clés : fractal structure, nonlocal condition
Mots-clés : fractal structure, nonlocal condition
@article{IZKAB_2018_5_a5,
author = {L. I. Serbina},
title = {On usage of the loaded equations in modeling of},
journal = {News of the Kabardin-Balkar scientific center of RAS},
pages = {44--49},
year = {2018},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IZKAB_2018_5_a5/}
}
L. I. Serbina. On usage of the loaded equations in modeling of. News of the Kabardin-Balkar scientific center of RAS, no. 5 (2018), pp. 44-49. http://geodesic.mathdoc.fr/item/IZKAB_2018_5_a5/
[1] A. M. Nakhushev, Nagruzhennye uravneniya i ikh prilozheniya, Nauka, M., 2012, 231 pp.
[2] T. Ya. Polubarinova-Kochina, Teoriya dvizheniya gruntovykh vod., Izd. 2-e, Nauka, M., 1977, 64 pp. | MR
[3] L. I. Serbina, Nelokalnye matematicheskie modeli perenosa v vodonosnykh sistemakh, Nauka, M., 2007, 167 pp.