Minimization of some robast summs
News of the Kabardin-Balkar scientific center of RAS, no. 6-2 (2017), pp. 244-248
Cet article a éte moissonné depuis la source Math-Net.Ru
A robust approach to the construction of machine learning algorithms is considered, based on minimization of robust finite sums of parametrized functions. It is based on the application of finite robust differentiable aggregating summation functions that are stable against emissions.
Keywords:
aggregating function, parameterized functions, robust sum
Mots-clés : emissions.
Mots-clés : emissions.
@article{IZKAB_2017_6-2_a25,
author = {Z. M. Shibzukhov},
title = {Minimization of some robast summs},
journal = {News of the Kabardin-Balkar scientific center of RAS},
pages = {244--248},
year = {2017},
number = {6-2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IZKAB_2017_6-2_a25/}
}
Z. M. Shibzukhov. Minimization of some robast summs. News of the Kabardin-Balkar scientific center of RAS, no. 6-2 (2017), pp. 244-248. http://geodesic.mathdoc.fr/item/IZKAB_2017_6-2_a25/
[1] P. J. Rousseeuw, “Least Median of Squares Regression”, Journal of the American Statistical Association, 1984, no. 79, 871–880 | DOI | MR | Zbl
[2] P. J. Rousseeuw, A. M. Leroy, Robust Regression and Outlier Detection, John Wiley and Sons, NY, 1987 | MR | Zbl
[3] Z. M. Shibzukhov, “On the Principle of Empirical Risk Minimization Based on Averaging Aggregation Functions”, Doklady Mathematics, 96:2 (2017), 494–497 | DOI | MR | Zbl
[4] P. J. Huber, Robust Statistics, John Wiley and Sons, NY, 1981 | MR | Zbl