On some inverse problems of the theory
News of the Kabardin-Balkar scientific center of RAS, no. 6-2 (2017), pp. 180-183.

Voir la notice de l'article provenant de la source Math-Net.Ru

The inverse problems of mathematical physics in models of the theory of elasticity and the method of dynamic particles are considered. Such models are useful in intelligent systems of virtual prototyping for taking decision with respect to system operability. Examples of solving inverse problems on the selection of thermophysical characteristics of multilayer cable insulation by local variation method are presented. Direct problems are solved by the finite element method with the use of software complexes such as Solid Works.
Keywords: dynamic particle method, finite element method.
@article{IZKAB_2017_6-2_a18,
     author = {M. M. Oshkhunov and M. A. Dzhankulaeva},
     title = {On some inverse problems of the theory},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {180--183},
     publisher = {mathdoc},
     number = {6-2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2017_6-2_a18/}
}
TY  - JOUR
AU  - M. M. Oshkhunov
AU  - M. A. Dzhankulaeva
TI  - On some inverse problems of the theory
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2017
SP  - 180
EP  - 183
IS  - 6-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2017_6-2_a18/
LA  - ru
ID  - IZKAB_2017_6-2_a18
ER  - 
%0 Journal Article
%A M. M. Oshkhunov
%A M. A. Dzhankulaeva
%T On some inverse problems of the theory
%J News of the Kabardin-Balkar scientific center of RAS
%D 2017
%P 180-183
%N 6-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2017_6-2_a18/
%G ru
%F IZKAB_2017_6-2_a18
M. M. Oshkhunov; M. A. Dzhankulaeva. On some inverse problems of the theory. News of the Kabardin-Balkar scientific center of RAS, no. 6-2 (2017), pp. 180-183. http://geodesic.mathdoc.fr/item/IZKAB_2017_6-2_a18/

[1] O. Zenkevich, Metod konechnykh elementov v tekhnike, Mir., M., 1975, 543 pp.

[2] M. M. Oshkhunov, Z. V. Nagoev, Matematicheskie modeli deformiruemykh sred dlya intellektualnykh sistem virtualnogo prototipirovaniya, Izdatelstvo KBNTs RAN, Nalchik, 2013, 201 pp.

[3] Z. V. Nagoev, M. M. Oshkhunov, “The method of discrete-dynamical particles in problems of mechanics of a deformable solid”, Proceedings of the Russian Academy of Sciences. Mechanics of a solid, 2011, no. 4, 155–169

[4] Lennard Jones J. E. Cohesion., Proc. Phys. Soc, 43, Part 5:240 (1931), 461–482 | DOI

[5] A. A. Samarskii, P. N. Vabischevich, Chislennye metody resheniya obratnykh zadach matematicheskoi fiziki, LKI, M, 2009, 480 pp.

[6] M. M. Oshkhunov, T. A. Borukaev, A. K. Mikitaev, M. Kh. Ligidov, M. A. Dzhankulaeva, “Ob optimalnom vybore zakona izmeneniya koeffitsienta lineinogo rasshireniya v polykh tsilindrakh pri nagrevanii”, Materialovedenie, 2014, no. 8, 3–5, M.

[7] F. L. Chernousko, N. V. Banichuk, Variatsionnye zadachi mekhaniki i upravleniya. Chislennye metody, Nauka, M., 1973, 240 pp.