A priori estimates for solutions of boundary value problems for convection-diffusion fractional-order equation
News of the Kabardin-Balkar scientific center of RAS, no. 6-1 (2017), pp. 60-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper by the method of energy inequalities a priori estimates for the solution of the Dirichlet and Robin boundary value problems for the convection-diffusion equation of fractional order are obtained. From this follows the uniqueness and continuous dependence of the solution of the problems posed on the initial data.
Keywords: Caputo fractional derivative, Riemann-Liouville fractional integral, boundary value problems, a priori estimate.
Mots-clés : fractional convection-diffusion equation
@article{IZKAB_2017_6-1_a9,
     author = {E. M. Shogenova},
     title = {A priori estimates for solutions of boundary value problems for convection-diffusion fractional-order equation},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {60--66},
     publisher = {mathdoc},
     number = {6-1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2017_6-1_a9/}
}
TY  - JOUR
AU  - E. M. Shogenova
TI  - A priori estimates for solutions of boundary value problems for convection-diffusion fractional-order equation
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2017
SP  - 60
EP  - 66
IS  - 6-1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2017_6-1_a9/
LA  - ru
ID  - IZKAB_2017_6-1_a9
ER  - 
%0 Journal Article
%A E. M. Shogenova
%T A priori estimates for solutions of boundary value problems for convection-diffusion fractional-order equation
%J News of the Kabardin-Balkar scientific center of RAS
%D 2017
%P 60-66
%N 6-1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2017_6-1_a9/
%G ru
%F IZKAB_2017_6-1_a9
E. M. Shogenova. A priori estimates for solutions of boundary value problems for convection-diffusion fractional-order equation. News of the Kabardin-Balkar scientific center of RAS, no. 6-1 (2017), pp. 60-66. http://geodesic.mathdoc.fr/item/IZKAB_2017_6-1_a9/

[1] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.

[2] V. Kh. Shogenov, M. Kh. Shkhanukov-Lafishev, Kh. M. Beshtoev, Drobnye proizvodnye: interpretatsiya i nekotorye primeneniya v fizike., Soobscheniya ob'edinennogo instituta yadernykh issledovanii, Dubna, 1997, 20 pp.

[3] M. A. Mikheev, I. M. Mikheeva, Osnovy teplootdachi, Energiya, M., 1977

[4] M. Kh. Shkhanukov-Lafishev, F. I. Taukenova, “Raznostnye metody resheniya kraevykh zadach dlya differentsialnykh uravnenii drobnogo poryadka”, Zhurn. vychislit. matematiki i mat. fiziki, 46:10 (2006), 1871–1881 | MR

[5] A. A. Khagazheeva, A. A. Alikhanov, “Apriornaya otsenka resheniya pervoi kraevoi zadachi dlya uravneniya diffuzii s operatorami drobnogo integro-differentsirovaniya \date 26-27 iyunya 2015”, tez. dokl. YuMI VNTs RAN i RSO-A, Algebra, analiz i smezhnye voprosy matematicheskogo modelirovaniya, Vladikavkaz, 106–107

[6] A. A. Alikhanov, “Apriornye otsenki reshenii kraevykh zadach dlya uravnenii drobnogo poryadka”, Differents. uravneniya, 46:5 (2010), 658–664 | MR | Zbl

[7] A. A. Alikhanov, “Boundary value problems for the diffusion equation of the variable order in differential and difference settings”, Appl. Math. Comput, 219 (2012), 3938–3946 | MR | Zbl

[8] A. A. Alikhanov, “Numerical methods of solutions of boundary value problems for the multi-term variable-distributed order diffusion equation”, Appl. Math. Comput, 268 (2015), 12–22 | MR | Zbl