On a non-local problem for the fractional
News of the Kabardin-Balkar scientific center of RAS, no. 6-1 (2017), pp. 49-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider a nonlocal problem for a fractional telegraph equation with Caputo derivatives. A solution of the problem with an integral condition for the equation is constructed in terms of the Wright-type function. The existence and uniqueness theorem of the problem is proved.
Keywords: Nonlocal problem, Caputo derivative, fractional telegraph equation, integral condition.
@article{IZKAB_2017_6-1_a7,
     author = {R. A. Pshibikhova},
     title = {On a non-local problem for the fractional},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {49--53},
     publisher = {mathdoc},
     number = {6-1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2017_6-1_a7/}
}
TY  - JOUR
AU  - R. A. Pshibikhova
TI  - On a non-local problem for the fractional
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2017
SP  - 49
EP  - 53
IS  - 6-1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2017_6-1_a7/
LA  - ru
ID  - IZKAB_2017_6-1_a7
ER  - 
%0 Journal Article
%A R. A. Pshibikhova
%T On a non-local problem for the fractional
%J News of the Kabardin-Balkar scientific center of RAS
%D 2017
%P 49-53
%N 6-1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2017_6-1_a7/
%G ru
%F IZKAB_2017_6-1_a7
R. A. Pshibikhova. On a non-local problem for the fractional. News of the Kabardin-Balkar scientific center of RAS, no. 6-1 (2017), pp. 49-53. http://geodesic.mathdoc.fr/item/IZKAB_2017_6-1_a7/

[1] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003

[2] R. A. Pshibikhova, “Analog zadachi Gursa dlya obobschennogo telegrafnogo uravneniya drobnogo poryadka”, Differentsialnye uravneniya, 50:6 (2014), 839–843 | MR | Zbl

[3] A. S. Eremin, “Tri zadachi dlya odnogo uravneniya v chastnykh drobnykh proizvodnykh”, Trudy Vserossiiskoi nauchnoi konferentsii «Differentsialnye uravneniya i kraevye zadachi» (26-28 maya 2004 g.), Matem. modelirovanie i kraev. zadachi, v. chast 3, SamGTU, Samara, 2004, 94–98

[4] R. A. Pshibikhova, “Zadacha Gursa dlya drobnogo telegrafnogo uravneniya s proizvodnymi Kaputo”, Matematicheskie zametki, 99:4 (2016), 559–563 | MR

[5] R. A. Pshibikhova, “Zadacha Gursa dlya drobnogo telegrafnogo uravneniya s proizvodnymi Kaputo i s integralnym usloviem”, Izvestiya KBNTs RAN, 2016, no. 2 (70), 25–29

[6] A. V. Pskhu, Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka., M., 2005

[7] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, “Theory and Applications of Fractional Differential Equations”, North-Holland Math. Stud., 204 (2006), Elsevier, Amsterdam | MR | Zbl