Gevrey’s problem for parabolic mixed type equation with fractional derivative
News of the Kabardin-Balkar scientific center of RAS, no. 2 (2017), pp. 37-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the Gevrey problem for the parabolic equation with direct and reverse time in a rectangular domain. The solvability of the problem is reduced to the solvability of the generalized Abel equation within the class of functions satisfying the Holder condition.
Keywords: Gevrey’s problem, Riemann – Liouville fractional integrodifferentiation operator, mixed-parabolic equation, Wright type function, Holder condition.
Mots-clés : fractional diffusion equation, Abel equation
@article{IZKAB_2017_2_a0,
     author = {S.Kh. Gekkieva},
     title = {Gevrey{\textquoteright}s problem for parabolic mixed type equation with fractional derivative},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {37--43},
     publisher = {mathdoc},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2017_2_a0/}
}
TY  - JOUR
AU  - S.Kh. Gekkieva
TI  - Gevrey’s problem for parabolic mixed type equation with fractional derivative
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2017
SP  - 37
EP  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2017_2_a0/
LA  - ru
ID  - IZKAB_2017_2_a0
ER  - 
%0 Journal Article
%A S.Kh. Gekkieva
%T Gevrey’s problem for parabolic mixed type equation with fractional derivative
%J News of the Kabardin-Balkar scientific center of RAS
%D 2017
%P 37-43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2017_2_a0/
%G ru
%F IZKAB_2017_2_a0
S.Kh. Gekkieva. Gevrey’s problem for parabolic mixed type equation with fractional derivative. News of the Kabardin-Balkar scientific center of RAS, no. 2 (2017), pp. 37-43. http://geodesic.mathdoc.fr/item/IZKAB_2017_2_a0/

[1] L. I. Serbina, Nelokalnye matematicheskie modeli perenosa v vodonosnykh sistemakh, Nauka, M., 2007, 167 pp.

[2] A. M. Nakhushev, Zadachi so smescheniem dlya uravnenii v chastnykh proizvodnykh, Nauka, M., 2006, 287 pp.

[3] A. A. Kerefov, “Ob odnoi kraevoi zadache Zhevre dlya parabolicheskogo uravneniya so znakoperemennym razryvom pervogo roda u koeffitsienta pri proizvodnoi po vremeni”, Differents. uravneniya, X:1 (1974), 69–77 | MR | Zbl

[4] A. A. Kerefov, “Zadacha Zhevre dlya odnogo smeshanno-parabolicheskogo uravneniya”, Differents. uravneniya, XIII:1 (1977), 76–83 | MR | Zbl

[5] S. A. Tersenov, Parabolicheskie uravneniya s menyayuschimsya napravleniem vremeni, Nauka, Novosibirsk, 1985, 301 pp.

[6] N. V. Kislov, A. V. Chervyakov, “Kraevaya zadacha s menyayuschimsya napravleniem vremeni”, Vestnik MEI, 2002, no. 6, 62–67

[7] S. V. Popov, “O pervoi kraevoi zadache dlya parabolicheskogo uravneniya s menyayuschimsya napravleniem vremeni”, Dinamika sploshnoi sredy, 1991, no. 102, 100–113, Novosibirsk | Zbl

[8] I. E. Egorov, “Kraevye zadachi dlya uravnenii vysokogo poryadka i s menyayuschimsya napravleniem vremeni”, Dokl. AN SSSR, 303:6 (1988), 1301–1304

[9] N. N. Yanenko, V. A. Novikov, “Ob odnom novom klasse uravnenii peremennogo tipa”, Uspekhi mat. nauk, 35:4 (1980), 156 | MR

[10] A. V. Pskhu, Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005, 199 pp.

[11] S. Kh. Gekkieva, “Analog zadachi Trikomi dlya uravneniya smeshannogo tipa s drobnoi proizvodnoi”, Izvestiya Kabardino-Balkarskogo nauchnogo tsentra RAN, 2001, no. 2 (7), 78–80

[12] S. Kh. Gekkieva, “Smeshannye kraevye zadachi dlya nagruzhennogo diffuzionnovolnovogo uravneniya”, Nauchnye vedomosti BelGU, Seriya: Matematika. Fizika, 42, no. 6 (227), 2016, 32–35

[13] A. M. Nakhushev, Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995, 105 pp.

[14] F. D. Gakhov, Kraevye zadachi, Nauka, M., 1977, 640 pp.