An estimate for the first eigenvalue of the Dirichlet problem for an ordinary differential equation with fractional derivatives with different origins
News of the Kabardin-Balkar scientific center of RAS, no. 1 (2017), pp. 34-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the Dirichlet problem for an ordinary linear differential equation of fractional order. The principal differential part of the equation is the composition of Riemann-Liouville and Caputo fractional derivatives with the different origins. In the paper, we found a lower-bound estimate for the first eigenvalue of the problem.
Keywords: fractional derivative, Riemann-Liouville derivative, Caputo derivative, Dirichlet problem, eigenvalue.
@article{IZKAB_2017_1_a5,
     author = {Eneyeva L. M.},
     title = {An estimate for the first eigenvalue of the {Dirichlet} problem for an ordinary differential equation with fractional derivatives with different origins},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {34--40},
     year = {2017},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2017_1_a5/}
}
TY  - JOUR
AU  - Eneyeva L. M.
TI  - An estimate for the first eigenvalue of the Dirichlet problem for an ordinary differential equation with fractional derivatives with different origins
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2017
SP  - 34
EP  - 40
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2017_1_a5/
LA  - ru
ID  - IZKAB_2017_1_a5
ER  - 
%0 Journal Article
%A Eneyeva L. M.
%T An estimate for the first eigenvalue of the Dirichlet problem for an ordinary differential equation with fractional derivatives with different origins
%J News of the Kabardin-Balkar scientific center of RAS
%D 2017
%P 34-40
%N 1
%U http://geodesic.mathdoc.fr/item/IZKAB_2017_1_a5/
%G ru
%F IZKAB_2017_1_a5
Eneyeva L. M. An estimate for the first eigenvalue of the Dirichlet problem for an ordinary differential equation with fractional derivatives with different origins. News of the Kabardin-Balkar scientific center of RAS, no. 1 (2017), pp. 34-40. http://geodesic.mathdoc.fr/item/IZKAB_2017_1_a5/

[1] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.

[2] S. Sh. Rekhviashvili, “K opredeleniyu fizicheskogo smysla drobnogo integrodifferentsirovaniya”, Nelineinyi mir, 5:4 (2007), 194–197

[3] S. Sh. Rekhviashvili, “Formalizm Lagranzha s drobnoi proizvodnoi v zadachakh mekhaniki”, Pisma v ZhTF, 30:2 (2004), 33–37

[4] B. Stanković, “An equation with left and right fractional derivatives”, Publications de l'institute mathématique, Nouvelle série, 2006, no. 80 (94), 259–272 | DOI | MR | Zbl

[5] T. M. Atanacković, B. Stanković, “On a differential equation with left and right fractional derivatives”, Fractional calculus and applied analysis, 10:2 (2007), 139–150 | MR | Zbl

[6] L. M. Eneeva, “Kraevaya zadacha dlya differentsialnogo uravneniya s proizvodnymi drobnogo poryadka s razlichnymi nachalami”, Vestnik KRAUNTs. Fiz. mat. nauki, 2015, no. 2 (11), 39–44 | Zbl