A model of dridt-diffusion transportation of charge carriers in a massive alkali halide crystals under hydrostatic pressure
News of the Kabardin-Balkar scientific center of RAS, no. 1 (2017), pp. 29-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

A model of the drift-diffusion transport of charge carriers in the layers of fractal structure is studied, taking into account the processes of generation and recombination of charge carriers. The results of the model equation are found in the analytical form.
Keywords: volume charge density, generation and recombination of charge carriers drift-diffusion transport of charge carriers, the fractional derivative of Riemann-Liouville and Caputo
Mots-clés : fractal structure.
@article{IZKAB_2017_1_a4,
     author = {M. O. Mamchuev},
     title = {A model of dridt-diffusion transportation of charge carriers in a massive alkali halide crystals under hydrostatic pressure},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {29--33},
     publisher = {mathdoc},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2017_1_a4/}
}
TY  - JOUR
AU  - M. O. Mamchuev
TI  - A model of dridt-diffusion transportation of charge carriers in a massive alkali halide crystals under hydrostatic pressure
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2017
SP  - 29
EP  - 33
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2017_1_a4/
LA  - ru
ID  - IZKAB_2017_1_a4
ER  - 
%0 Journal Article
%A M. O. Mamchuev
%T A model of dridt-diffusion transportation of charge carriers in a massive alkali halide crystals under hydrostatic pressure
%J News of the Kabardin-Balkar scientific center of RAS
%D 2017
%P 29-33
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2017_1_a4/
%G ru
%F IZKAB_2017_1_a4
M. O. Mamchuev. A model of dridt-diffusion transportation of charge carriers in a massive alkali halide crystals under hydrostatic pressure. News of the Kabardin-Balkar scientific center of RAS, no. 1 (2017), pp. 29-33. http://geodesic.mathdoc.fr/item/IZKAB_2017_1_a4/

[1] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.

[2] V. V. Uchaikin, Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008, 512 pp.

[3] V. E. Arkhincheev, “O relaksatsii zaryada vo fraktalnykh strukturakh”, Pisma v ZhETF, 52:7 (1990), 1007–1009

[4] R. R. Nigmatullin, “Drobnyi integral i ego fizicheskaya interpretatsiya”, TMF, 90:2 (1992), 354–367

[5] K. V. Chukbar, “Stokhasticheskii perenos i drobnye proizvodnye”, ZhETF, 108:5(11) (1995), 1875–1884

[6] V. E. Arkhincheev, “O dreife pri sluchainom bluzhdanii po samopodobnym klasteram”, ZhETF, 115:3 (1999), 1016–1023

[7] V. E. Arkhincheev, “Sluchainoe bluzhdanie po ierarkhicheskim grebeshkovym strukturam”, ZhETF, 115:4 (1999), 1285–1296

[8] R. T. Sibatov, V. V. Uchaikin, “Drobno-differentsialnyi podkhod k opisaniyu dispersionnogo perenosa v poluprovodnikakh”, UFN, 179:10 (2009), 1079 | DOI

[9] S. Sh. Rekhviashvili, O. Mamchuev Murat, O. Mamchuev Mukhtar, “Model diffuzionnodreifovogo transporta nositelei zaryada v sloyakh s fraktalnoi strukturoi”, FTT, 58:4 (2016)

[10] O. Mamchuev Mukhtar, “K voprosu o primenenii drobnogo integrodifferentsirovaniya v modelirovanii diffuzionno-dreifovogo transporta nositelei zaryada v sloyakh s fraktalnoi strukturoi”, Izvestiya KBNTs RAN, 2016, no. 4 (72), 20–27

[11] Murat O. Mamchuev, Kraevye zadachi dlya uravnenii i sistem uravnenii s chastnymi proizvodnymi drobnogo poryadka, Izd-vo KBNTs RAN., Nalchik:, 2013, 200 pp.