Modeling of droplets’ electrodynamic coagulation in fractal media
News of the Kabardin-Balkar scientific center of RAS, no. 1 (2017), pp. 19-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

Electrodynamic coagulation of droplets is modeled on the basis of differential equations of fractional order in the cloud with fractal structure under the influence of an electric field. Numerical experiments were performed to evaluate the effect of fractal environment on the growth of cloud particles with their microphysical parameters in different combinations. Fractional calculus apparatus have been used. We have determined the total dependence of the cloud particle growth on fractal parameters expressed in a sharp jump, followed by a decrease in the drops growth rate with different fractals parameters.
Mots-clés : electrodynamic coagulation, fractal dimension
Keywords: cloud drop, mathematical model, convective cloud.
@article{IZKAB_2017_1_a2,
     author = {T. S. Kumykov},
     title = {Modeling of droplets{\textquoteright} electrodynamic coagulation in fractal media},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {19--23},
     publisher = {mathdoc},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2017_1_a2/}
}
TY  - JOUR
AU  - T. S. Kumykov
TI  - Modeling of droplets’ electrodynamic coagulation in fractal media
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2017
SP  - 19
EP  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2017_1_a2/
LA  - ru
ID  - IZKAB_2017_1_a2
ER  - 
%0 Journal Article
%A T. S. Kumykov
%T Modeling of droplets’ electrodynamic coagulation in fractal media
%J News of the Kabardin-Balkar scientific center of RAS
%D 2017
%P 19-23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2017_1_a2/
%G ru
%F IZKAB_2017_1_a2
T. S. Kumykov. Modeling of droplets’ electrodynamic coagulation in fractal media. News of the Kabardin-Balkar scientific center of RAS, no. 1 (2017), pp. 19-23. http://geodesic.mathdoc.fr/item/IZKAB_2017_1_a2/

[1] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987, 688 pp.

[2] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit, M, 2003, 272 pp.

[3] A. V. Pskhu, Kraevye zadachi dlya differentsialnykh uravnenii s chastnymi proizvodnymi drobnogo i kontinualnogo poryadka, Izdatelstvo KBNTs RAN, Nalchik, 2005, 185 pp.

[4] S. Sh. Rekhviashvili, “K opredeleniyu fizicheskogo smysla drobnogo integrodifferentsirovaniya”, Nelineinyi mir, 5:4 (2007), 194–198

[5] S. Sh. Rekhviashvili, “Formalizm Lagranzha s drobnoi proizvodnoi v zadachakh mekhaniki”, Pisma ZhTF, 30:2 (2004), 33–37

[6] F. I. Taukenova, M. Kh. Shkhanukov-Lafishev, “Raznostnye metody resheniya kraevykh zadach dlya differentsialnykh uravnenii drobnogo poryadka”, ZhVM, 46:10 (2006), 1871–1881 | MR