A nonlocal boundary value problem for an ordinary
News of the Kabardin-Balkar scientific center of RAS, no. 1 (2017), pp. 12-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

The theorem of existence and uniqueness of the solution of ordinary differential equations of fractional order with constant coefficients is proved.
Keywords: boundary value problem, operator of fractional differentiation, Riemann-Liouville operator, Caputo operator.
@article{IZKAB_2017_1_a1,
     author = {L. Kh. Gadzova},
     title = {A nonlocal boundary value problem for an ordinary},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {12--18},
     publisher = {mathdoc},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2017_1_a1/}
}
TY  - JOUR
AU  - L. Kh. Gadzova
TI  - A nonlocal boundary value problem for an ordinary
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2017
SP  - 12
EP  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2017_1_a1/
LA  - ru
ID  - IZKAB_2017_1_a1
ER  - 
%0 Journal Article
%A L. Kh. Gadzova
%T A nonlocal boundary value problem for an ordinary
%J News of the Kabardin-Balkar scientific center of RAS
%D 2017
%P 12-18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2017_1_a1/
%G ru
%F IZKAB_2017_1_a1
L. Kh. Gadzova. A nonlocal boundary value problem for an ordinary. News of the Kabardin-Balkar scientific center of RAS, no. 1 (2017), pp. 12-18. http://geodesic.mathdoc.fr/item/IZKAB_2017_1_a1/

[1] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.

[2] J. H. Barrett, “Differential equations of non-integer order”, Canadian J. Math, 6:4 (1954), 529–541 | DOI | MR | Zbl

[3] M. M. Dzhrbashyan, Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966, 672 pp.

[4] M. M. Dzhrbashyan, A. B. Nersesyan, “Drobnye proizvodnye i zadacha Koshi dlya differentsialnykh uravnenii drobnogo poryadka”, Izv. ANArmSSR. Matematika, 3:1 (1968), 3–28 | MR

[5] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, “Theory and applications of fractional differential equations”, North-Holland Math. Stud., 204 (2006), Elsevier, Amsterdam | MR | Zbl

[6] A. V. Pskhu, “Kraevaya zadacha dlya uravneniya v chastnykh proizvodnykh pervogo poryadka s operatorom drobnogo diskretno raspredelennogo differentsirovaniya”, Differentsialnye uravneniya, 52:12 (2016), 1682–1694 | MR | Zbl

[7] A. V. Pskhu, “Uravnenie drobnoi diffuzii s operatorom diskretno raspredelennogo differentsirovaniya”, Sibirean electr. Math. Reports, 13 (2016), 1078–1098 | MR | Zbl

[8] A. V. Pskhu, “Nachalnaya zadacha dlya lineinogo obyknovennogo differentsialnogo uravneniya drobnogo poryadka”, Mat. sbornik, 200:4 (2011), 111–122 | MR

[9] L. Kh. Gadzova, “Obobschennaya zadacha Dirikhle dlya lineinogo differentsialnogo uravneniya drobnogo poryadka s postoyannymi koeffitsientami”, Differentsialnye uravneniya, 50:1 (2014), 121–125 | MR | Zbl

[10] L. Kh. Gadzova, “Zadacha Dirikhle i Neimana dlya obyknovennogo differentsialnogo uravneniya drobnogo poryadka s postoyannymi koeffitsientami”, Differentsialnye uravneniya, 51:12 (2015), 1580–1586 | MR | Zbl

[11] L. Kh. Gadzova, “Zadacha Dirikhle dlya obyknovennogo differentsialnogo uravneniya drobnogo poryadka”, Doklady Adygskoi (Cherkesskoi) mezhdunarodnoi akademii nauk, 15:2 (2013), 36–39

[12] L. Kh. Gadzova, “Zadacha Neimana dlya obyknovennogo differentsialnogo uravneniya drobnogo poryadka”, Vladikavk. mat. zhurn., 18:3 (2016), 22–30 | MR | Zbl

[13] E. M. Wright, “On the coefficients of power series having exponential singularities”, J. London Math. Soc., 8:29 (1933), 71–79 | DOI | MR | Zbl