A priori estimates of solutions of boundary value
News of the Kabardin-Balkar scientific center of RAS, no. 6 (2016), pp. 96-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

Boundary value problems for third-order equation of parabolic type with Caputo fractional derivative are considered. A priori estimates of the solution of the analogue of the first, second and nonlocal boundary value problems for equations with multiple characteristics are obtained by the method of energy inequalities.
Keywords: a priori estimate of the boundary-value problems; equations with multiple characteristics; method of energy integral; fractional derivative according to Caputo.
@article{IZKAB_2016_6_a14,
     author = {A. M. Shkhagapsoev},
     title = {A priori estimates of solutions of boundary value},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {96--101},
     publisher = {mathdoc},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2016_6_a14/}
}
TY  - JOUR
AU  - A. M. Shkhagapsoev
TI  - A priori estimates of solutions of boundary value
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2016
SP  - 96
EP  - 101
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2016_6_a14/
LA  - ru
ID  - IZKAB_2016_6_a14
ER  - 
%0 Journal Article
%A A. M. Shkhagapsoev
%T A priori estimates of solutions of boundary value
%J News of the Kabardin-Balkar scientific center of RAS
%D 2016
%P 96-101
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2016_6_a14/
%G ru
%F IZKAB_2016_6_a14
A. M. Shkhagapsoev. A priori estimates of solutions of boundary value. News of the Kabardin-Balkar scientific center of RAS, no. 6 (2016), pp. 96-101. http://geodesic.mathdoc.fr/item/IZKAB_2016_6_a14/

[1] H. Block, “Sur les equations lineaires aux derivees partielles a carateristiques multiples”, Ark. mat., astron., fys, 7:13 (1912), 1–34

[2] E. Del Vecchio, “Sulle equazioni $Z\_xxx-Z\_y+\phi \_1 (x,y)=0, Z\_xxx-Z\_yy+\phi \_2 (x,y)=0$”, Mem. Real acad. cienc. Torino. Ser. 2, 66 (1915), 1–41 | Zbl

[3] E. Del Vecchio, “Sulle deux problems d'integration pour las equazions paraboliques $Z\_xxx-Z\_y=0,Z\_xxx-Z\_yy=0$”, Ark. mat., astron., fys, 11 (1916), 32–43

[4] L. Cattabriga, “Potenziali di linea e di dominio per equazioni non paraboliche in due variabili a caratteristiche multiple”, Rend. Semin.mat. Univ. Padova, 1961, no. 31, 1–45 | MR | Zbl

[5] L. Cattabriga, “Un problema al kontorno per una equazione di ordine dispary”, Analli della scuola normale superior di pisa fis e mat, 13:2 (1959), 163–169 | MR

[6] T. D. Dzhuraev, Kraevye zadachi dlya uravnenii smeshannogo i smeshanno-sostavnogo tipov, FAN, Tashkent, 1979, 236 pp.

[7] Caputo M., Elasticita e Dissipazione, Zanichelli, Bologna, 1969

[8] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.

[9] Alikhanov A.A., “Apriornye otsenki reshenii kraevykh zadach dlya uravnenii drobnogo poryadka”, Differents. uravneniya, 46:5 (2010), 658-664 | MR | Zbl