Solution of a two-dimensional Abel integral equation of the second kind
News of the Kabardin-Balkar scientific center of RAS, no. 6 (2016), pp. 75-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article we construct an explicit representation for a solution of a linear two-dimensional Abel type integral equation of the second kind with partial fractional integrals. The solution representation is given in terms of the Wright function.
Keywords: Abel integral equation, Riemann-Liouville fractional integral, Wright function.
@article{IZKAB_2016_6_a11,
     author = {A. V. Pskhu},
     title = {Solution of a two-dimensional {Abel} integral equation of the second kind},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {75--80},
     publisher = {mathdoc},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2016_6_a11/}
}
TY  - JOUR
AU  - A. V. Pskhu
TI  - Solution of a two-dimensional Abel integral equation of the second kind
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2016
SP  - 75
EP  - 80
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2016_6_a11/
LA  - ru
ID  - IZKAB_2016_6_a11
ER  - 
%0 Journal Article
%A A. V. Pskhu
%T Solution of a two-dimensional Abel integral equation of the second kind
%J News of the Kabardin-Balkar scientific center of RAS
%D 2016
%P 75-80
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2016_6_a11/
%G ru
%F IZKAB_2016_6_a11
A. V. Pskhu. Solution of a two-dimensional Abel integral equation of the second kind. News of the Kabardin-Balkar scientific center of RAS, no. 6 (2016), pp. 75-80. http://geodesic.mathdoc.fr/item/IZKAB_2016_6_a11/

[1] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit, M, 2003, 272 pp.

[2] E. Hille, J. D. Tamarkin, “On the Theory of Linear Integral Equations”, The Annals of Mathematics, Second Series, 31, no. 3, 1930, 479–528 | DOI | MR | Zbl

[3] A. A. Kilbas, M. Saigo, H. Takushima, “On integrable solution of a multidimensional Abel-type integral equation”, Fukuoka Univ. Sci. Rep, 25:1 (1995), 1–9 | MR | Zbl

[4] A. A. Kilbas, O. V. Skoromnik, “Reshenie mnogomernykh integralnykh uravnenii tipa Abelya s gipergeometricheskoi funktsiei Gaussa v yadrakh po piramidalnoi oblasti”, Tr. In-ta matem., 17:1 (2009), 71–78 | Zbl

[5] R. K. Raina, H. M. Srivastava, A. A. Kilbas, M. Saigo, “Solvability of some Abel-type integral equations involving the Gauss hypergeometric function as kernels in the space of summable functions”, ANZIAM J, 43:2 (2001), 291–320 | DOI | MR | Zbl

[6] A. M. Nakhushev, Nagruzhennye uravneniya, Nauka., M., 2012, 232 pp.

[7] A. S. Kalitvin, V. A. Kalitvin, Integralnye uravneniya Volterra i Volterra-Fredgolma s chastnymi integralami, Izd-vo LGPU, Lipetsk, 2006, 177 pp.

[8] A. V. Bitsadze, Uravneniya matematicheskoi fiziki, Nauka, M., 1976, 296 pp.

[9] R. A. Pshibikhova, “Zadacha Gursa dlya drobnogo telegrafnogo uravneniya s proizvodnymi Kaputo”, Matem. zametki, 99:4 (2016), 559–563 | MR

[10] K. U. Khubiev, “Ob odnoi matematicheskoi modeli uravneniya Allera”, Materialy Mezhdunarodnoi nauchnoi konferentsii «Aktualnye problemy prikladnoi matematiki i in-formatiki» (Terskol), 2016, 324–326

[11] E. M. Wright E. M. Wright, “On the coefficients of power series having exponential singularities”, J. London Math. Soc, 8:29 (1933), 71–79 | DOI | MR | Zbl

[12] A. V. Pskhu, Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005, 199 pp.

[13] M. M. Dzhrbashyan, Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966, 672 pp.