To the question of application of fractional integral differentiation in modeling of diffusion-drift transport of charge carriers in layers with fractal structure
News of the Kabardin-Balkar scientific center of RAS, no. 4 (2016), pp. 32-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

A study model of the diffusion-drift transport of charge carriers in the layers of the fractal structure is presented. The law of conservation of charge in layers with fractal structure is proved in analytical form.
Keywords: volume charge density, law of conservation of charge, fractional derivative of Riemann-Liouville and Caputo
Mots-clés : diffusion-drift transport of charge carriers, fractal structure.
@article{IZKAB_2016_4_a4,
     author = {M. O. Mamchuev},
     title = {To the question of application of fractional integral differentiation in modeling of diffusion-drift transport of charge carriers in layers with fractal structure},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {32--36},
     publisher = {mathdoc},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2016_4_a4/}
}
TY  - JOUR
AU  - M. O. Mamchuev
TI  - To the question of application of fractional integral differentiation in modeling of diffusion-drift transport of charge carriers in layers with fractal structure
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2016
SP  - 32
EP  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2016_4_a4/
LA  - ru
ID  - IZKAB_2016_4_a4
ER  - 
%0 Journal Article
%A M. O. Mamchuev
%T To the question of application of fractional integral differentiation in modeling of diffusion-drift transport of charge carriers in layers with fractal structure
%J News of the Kabardin-Balkar scientific center of RAS
%D 2016
%P 32-36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2016_4_a4/
%G ru
%F IZKAB_2016_4_a4
M. O. Mamchuev. To the question of application of fractional integral differentiation in modeling of diffusion-drift transport of charge carriers in layers with fractal structure. News of the Kabardin-Balkar scientific center of RAS, no. 4 (2016), pp. 32-36. http://geodesic.mathdoc.fr/item/IZKAB_2016_4_a4/

[1] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.

[2] A. V. Pskhu, Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005, 199 pp.

[3] O. Mamchuev Murat, Kraevye zadachi dlya uravnenii i sistem uravnenii s chastnymi proizvodnymi drobnogo poryadka, Izd-vo KBNTs RAN, Nalchik:, 2013, 200 pp.

[4] A. N. Kochubei, “Diffuziya drobnogo poryadka”, Differents. uravneniya, 26:4 (1990), 660, 670 | MR | Zbl

[5] V. E. Arkhincheev, “O relaksatsii zaryada fraktalnykh strukturakh”, Pisma v ZhETF, 52:7 (1990), 1007–1009

[6] R. R. Nigmatullin, “Drobnyi integral i ego fizicheskaya interpretatsiya”, TMF, 90:2 (1992), 354–367

[7] K. V. Chukbar, “Stokhasticheskii perenos i drobnye proizvodnye”, ZhETF, 108:5(11) (1995), 1875–1884

[8] V. E. Arkhincheev, “O dreife pri sluchainom bluzhdanii po samopodobnym klasteram”, ZhETF, 115:3 (1999), 1016–1023

[9] V. E. Arkhincheev, “Sluchainoe bluzhdanie po ierarkhicheskim grebeshkovym strukturam”, ZhETF, 115:4 (1999), 1285–1296

[10] S. Sh. Rekhviashvili, O. Mamchuev Murat, O. Mamchuev Mukhtar, “Model diffuzionno-dreifovogo transporta nositelei zaryada v sloyakh s fraktalnoi strukturoi”, FTT, 58:4 (2016)

[11] V. V. Uchaikin, Metod drobnykh proizvodnykh, Artishok, Ulyanovsk, 2008, 512 pp.

[12] R. T. Sibatov, V. V. Uchaikin, “Drobno-differentsialnyi podkhod k opisaniyu dispersionnogo perenosa v poluprovodnikakh”, UFN, 179:10 (2009), 1079 | DOI

[13] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady. Spetsialnye funktsii, Nauka, M., 1983, 752 pp. | MR