Goursat's task for the fractional telegraph equation with Caputo's derivatives and with the integrated
News of the Kabardin-Balkar scientific center of RAS, no. 2 (2016), pp. 25-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we study the Goursat problem with Caputo derivative and integral condition. For the considered problem we prove the theorem of existence and uniqueness of solution, and construct a representation of the solution.
Mots-clés : Goursat’s problem
Keywords: Caputo derivative, fractional telegraph equation, integral condition.
@article{IZKAB_2016_2_a4,
     author = {R. A. Pshibikhova},
     title = {Goursat's task for the fractional telegraph equation with {Caputo's} derivatives and with the integrated},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {25--29},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2016_2_a4/}
}
TY  - JOUR
AU  - R. A. Pshibikhova
TI  - Goursat's task for the fractional telegraph equation with Caputo's derivatives and with the integrated
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2016
SP  - 25
EP  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2016_2_a4/
LA  - ru
ID  - IZKAB_2016_2_a4
ER  - 
%0 Journal Article
%A R. A. Pshibikhova
%T Goursat's task for the fractional telegraph equation with Caputo's derivatives and with the integrated
%J News of the Kabardin-Balkar scientific center of RAS
%D 2016
%P 25-29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2016_2_a4/
%G ru
%F IZKAB_2016_2_a4
R. A. Pshibikhova. Goursat's task for the fractional telegraph equation with Caputo's derivatives and with the integrated. News of the Kabardin-Balkar scientific center of RAS, no. 2 (2016), pp. 25-29. http://geodesic.mathdoc.fr/item/IZKAB_2016_2_a4/

[1] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003

[2] R. A. Pshibikhova, “Analog zadachi Gursa dlya obobschennogo telegrafnogo uravneniya drobnogo poryadka”, Differentsialnye uravneniya, 50:6 (2014), 839–843 | MR | Zbl

[3] A. S. Eremin, “Tri zadachi dlya odnogo uravneniya v chastnykh drobnykh proizvodnykh”, Matem. modelirovanie i kraev. zadachi, Trudy Vserossiiskoi nauchnoi konferentsii «Differentsialnye uravneniya i kraevye zadachi» (26-28 maya 2004 g.), v. Ch. 3, SamGTU, Samara, 2004, 94–98

[4] A. V. Pskhu, Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005

[5] A. A. Srivastava H. M. Kilbas, J. J. Trujillo, “Theory and Applications of Fractional Differential Equations”, North-Holland Math. Stud.,, 204 (2006), Elsevier, Amsterdam | MR | Zbl

[6] V. S. Kiryakova, “The multi-index Mittag-Leffler functions as generators of fractional calculus operators and Laplace transforms”, International Conference on Mathematics and Its Applications (ICMA 2004) (Extended Abstracts), Kuwait Univ, 169–175 | MR

[7] R. A. Pshibikhova, “Zadacha Gursa dlya drobnogo telegrafnogo uravneniya s proizvodnymi Kaputo”, Matematicheskii sbornik, 99:4 (2016) | MR