Goursat's task for the fractional telegraph equation with Caputo's derivatives and with the integrated
News of the Kabardin-Balkar scientific center of RAS, no. 2 (2016), pp. 25-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper we study the Goursat problem with Caputo derivative and integral condition. For the considered problem we prove the theorem of existence and uniqueness of solution, and construct a representation of the solution.
Mots-clés : Goursat’s problem
Keywords: Caputo derivative, fractional telegraph equation, integral condition.
@article{IZKAB_2016_2_a4,
     author = {R. A. Pshibikhova},
     title = {Goursat's task for the fractional telegraph equation with {Caputo's} derivatives and with the integrated},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {25--29},
     year = {2016},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2016_2_a4/}
}
TY  - JOUR
AU  - R. A. Pshibikhova
TI  - Goursat's task for the fractional telegraph equation with Caputo's derivatives and with the integrated
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2016
SP  - 25
EP  - 29
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2016_2_a4/
LA  - ru
ID  - IZKAB_2016_2_a4
ER  - 
%0 Journal Article
%A R. A. Pshibikhova
%T Goursat's task for the fractional telegraph equation with Caputo's derivatives and with the integrated
%J News of the Kabardin-Balkar scientific center of RAS
%D 2016
%P 25-29
%N 2
%U http://geodesic.mathdoc.fr/item/IZKAB_2016_2_a4/
%G ru
%F IZKAB_2016_2_a4
R. A. Pshibikhova. Goursat's task for the fractional telegraph equation with Caputo's derivatives and with the integrated. News of the Kabardin-Balkar scientific center of RAS, no. 2 (2016), pp. 25-29. http://geodesic.mathdoc.fr/item/IZKAB_2016_2_a4/

[1] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003

[2] R. A. Pshibikhova, “Analog zadachi Gursa dlya obobschennogo telegrafnogo uravneniya drobnogo poryadka”, Differentsialnye uravneniya, 50:6 (2014), 839–843 | MR | Zbl

[3] A. S. Eremin, “Tri zadachi dlya odnogo uravneniya v chastnykh drobnykh proizvodnykh”, Matem. modelirovanie i kraev. zadachi, Trudy Vserossiiskoi nauchnoi konferentsii «Differentsialnye uravneniya i kraevye zadachi» (26-28 maya 2004 g.), v. Ch. 3, SamGTU, Samara, 2004, 94–98

[4] A. V. Pskhu, Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005

[5] A. A. Srivastava H. M. Kilbas, J. J. Trujillo, “Theory and Applications of Fractional Differential Equations”, North-Holland Math. Stud.,, 204 (2006), Elsevier, Amsterdam | MR | Zbl

[6] V. S. Kiryakova, “The multi-index Mittag-Leffler functions as generators of fractional calculus operators and Laplace transforms”, International Conference on Mathematics and Its Applications (ICMA 2004) (Extended Abstracts), Kuwait Univ, 169–175 | MR

[7] R. A. Pshibikhova, “Zadacha Gursa dlya drobnogo telegrafnogo uravneniya s proizvodnymi Kaputo”, Matematicheskii sbornik, 99:4 (2016) | MR