Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2016_2_a2, author = {M. G. Mazhgikhova}, title = {Neumann problem for ordinary differential equation of fractional order with delay argument}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {15--20}, publisher = {mathdoc}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2016_2_a2/} }
TY - JOUR AU - M. G. Mazhgikhova TI - Neumann problem for ordinary differential equation of fractional order with delay argument JO - News of the Kabardin-Balkar scientific center of RAS PY - 2016 SP - 15 EP - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IZKAB_2016_2_a2/ LA - ru ID - IZKAB_2016_2_a2 ER -
M. G. Mazhgikhova. Neumann problem for ordinary differential equation of fractional order with delay argument. News of the Kabardin-Balkar scientific center of RAS, no. 2 (2016), pp. 15-20. http://geodesic.mathdoc.fr/item/IZKAB_2016_2_a2/
[1] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003, 272 pp.
[2] J. H. Barrett, “Differential equation of non-integer order”, Canad. J. Math, 6:4 (1954), 529–541 | DOI | MR | Zbl
[3] M. M. Dzhrbashyan, A. B. Nersesyan, “Drobnye proizvodnye i zadachi Koshi dlya differentsialnykh uravnenii drobnogo poryadka”, Izv. AN ArmSSR. Matem., 1968, 3–28
[4] A. V. Pskhu, “Nachalnaya zadacha dlya lineinogo obyknovennogo differentsialnogo uravneniya drobnogo poryadka”, Mat. sbornik, 202:4 (2011), 111–122 | MR | Zbl
[5] S. B. Norkin, “O resheniyakh lineinogo odnorodnogo differentsialnogo uravneniya vtorogo poryadka s zapazdyvayuschim argumentom”, UMN, 14:1(85) (1959), 199–206 | MR | Zbl
[6] M. G. Mazhgikhova, “Nachalnaya zadacha dlya obyknovennogo differentsialnogo uravneniya drobnogo poryadka s zapazdyvayuschim argumentom”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 16:4 (2014), 28–30
[7] M. G. Mazhgikhova, “Zadacha Dirikhle dlya obyknovennogo differentsialnogo uravneneniya drobnogo poryadka s zapazdyvayuschim argumentom”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 17:2 (2015), 42–47
[8] L. Kh. Gadzova, “Zadacha Dirikhle i Neimana dlya obyknovennogo differentsialnogo uravneniya drobnogo poryadka s postoyannymi koeffitsientami”, Differentsialnye uravneniya, 51:12 (2015), 1580–1586 | MR | Zbl
[9] T. R. Prabhakar, “A singular integral equation with a generalized Mittag-Leffler function in the kernel”, Yokohama Math. J., 19 (1971), 7–15 | MR | Zbl
[10] M. M. Dzhrbashyan, Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966, 672 pp.
[11] A. K. Shukla, J. C. Prajapati, “On a generalization of Mittag-Leffler function and its properties”, J. Math. Anal. Appl., 336 (2007), 797–811 | DOI | MR | Zbl
[12] A. V. Pskhu, Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005, 199 pp.