On the spectrum of a boundary value problem with shift for an ordinary differential equation with the Dzhrbashyan – Nersesyan fractional differentiation operator
News of the Kabardin-Balkar scientific center of RAS, no. 2 (2016), pp. 5-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate the solvability of the boundary value problem with shift for ordinary differential equation with fractional differentiation Dzhrbashyan – Nersesyan operator.
Keywords: boundary value problem, operator of fractional differentiation, Dzhrbashyan – Nersesyan operator.
@article{IZKAB_2016_2_a0,
     author = {F.T. Bogatyreva},
     title = {On the spectrum of a boundary value problem with shift for an ordinary differential equation with the {Dzhrbashyan} {\textendash} {Nersesyan} fractional differentiation operator},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {5--9},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2016_2_a0/}
}
TY  - JOUR
AU  - F.T. Bogatyreva
TI  - On the spectrum of a boundary value problem with shift for an ordinary differential equation with the Dzhrbashyan – Nersesyan fractional differentiation operator
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2016
SP  - 5
EP  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2016_2_a0/
LA  - ru
ID  - IZKAB_2016_2_a0
ER  - 
%0 Journal Article
%A F.T. Bogatyreva
%T On the spectrum of a boundary value problem with shift for an ordinary differential equation with the Dzhrbashyan – Nersesyan fractional differentiation operator
%J News of the Kabardin-Balkar scientific center of RAS
%D 2016
%P 5-9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2016_2_a0/
%G ru
%F IZKAB_2016_2_a0
F.T. Bogatyreva. On the spectrum of a boundary value problem with shift for an ordinary differential equation with the Dzhrbashyan – Nersesyan fractional differentiation operator. News of the Kabardin-Balkar scientific center of RAS, no. 2 (2016), pp. 5-9. http://geodesic.mathdoc.fr/item/IZKAB_2016_2_a0/

[1] M. M. Dzhrbashyan, A. B. Nersesyan, “Drobnye proizvodnye i zadachi Koshi dlya differentsialnykh uravnenii drobnogo poryadka”, Izv. AN ArmSSR. Matematika, 1968, 3–28

[2] A. V. Pskhu, “Fundamentalnoe reshenie diffuzionno-volnovogo uravneniya drobnogo poryadka”, Izv. RAN, 73:2 (2009), 142 pp. | MR | Zbl

[3] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, M., 2003

[4] F. T. Bogatyreva, “Nelokalnaya kraevaya zadacha dlya obyknovennogo differentsialnogo uravneniya drobnogo poryadka s operatorom Dzhrbashyana Nersesyana”, Mater. VIII shkoly molodykh uchenykh «Nelokalnye kraevye zadachi i problemy sovremennogo analiza i informatiki», Nalchik, Khabez, 2010, 25–26

[5] F. T. Bogatyreva, “Kraevaya zadacha so smescheniem dlya obyknovennogo differentsial-nogo uravneniya s operatorom differentsirovaniya Dzhrbashyana Nersesyana”, Differentsialnye uravneniya, 50:2, 160–166 | MR | Zbl

[6] V. A. Ilin, E. I. Moiseev, “Nelokalnaya kraevaya zadacha pervogo roda dlya operatora Shturma-Liuvillya v differentsialnoi i raznostnoi traktovkakh”, Differentsialnye uravneniya, 23:7 (1987), 1198–1207 | MR

[7] M. M. Dzhrbashyan, Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, Moskva, 1966, 672 pp.

[8] D. A. Faddev, Lektsii po algebre, Nauka. Glavnaya redaktsiya fiziko-matematicheskoi literatury, M., 1984, 416 pp.

[9] A. V. Pskhu, Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, Moskva, 2005, 199 pp.