Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2015_6-2_a4, author = {M. A. Bagov and V. Ch. Kudaev}, title = {Conversion of terminal net into {Steiner} network}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {31--37}, publisher = {mathdoc}, number = {6-2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2015_6-2_a4/} }
M. A. Bagov; V. Ch. Kudaev. Conversion of terminal net into Steiner network. News of the Kabardin-Balkar scientific center of RAS, no. 6-2 (2015), pp. 31-37. http://geodesic.mathdoc.fr/item/IZKAB_2015_6-2_a4/
[1] E. N. Gilbert, G. O. Pollak, “Minimalnye derevya Shteinera”, Kiberneticheskii sbornik. Novaya seriya., 1971, no. 8., 19–49, Mir
[2] E. N. Gordeev, O. G. Tarastsov, “Zadacha Shteinera. Obzor”, Diskretnaya matematika, 2:5 (1993), 3–28
[3] V. Ch. Kudaev, M. A. Bagov, “Lokalnoe reshenie setevoi zadachi Shteinera”, Doklady Adygskoi (Cherkesskoi) Akademii nauk, 16:4 (2014), 9–14
[4] A. P. Merenkov, E. V. Sennova, S. V. Sumarokov, V. G. Sidler, N. N. Novitskii, V. A. Stennikov, V. R. Chupin, Matematicheskoe modelirovanie i optimizatsiya sistem teplo-, vodo-, nefte- i gazosnabzheniya, Nauka, SORAN., Novosibirsk, 1992, 406 pp.
[5] E. N. Gilbert, “Minimal Cost Communication Netwoks”, Bell System technological Journal, 1967, no. 9, 48–50
[6] E. F. Cockayne, “On the Steiner problem”, Canad. Math. Bull, 10 (1967), 431–450
[7] F. K. Hwang, G. D. Song, C. V. Tind, D. Z. Du, “Adecomposition theorem on euclidean Steiner minimal trees”, Discr. Comput. Geometry, 1988