Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2015_6-2_a20, author = {O. Kh. Masaeva}, title = {The uniqueness of solution of the {Dirichlet} problem}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {127--130}, publisher = {mathdoc}, number = {6-2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2015_6-2_a20/} }
O. Kh. Masaeva. The uniqueness of solution of the Dirichlet problem. News of the Kabardin-Balkar scientific center of RAS, no. 6-2 (2015), pp. 127-130. http://geodesic.mathdoc.fr/item/IZKAB_2015_6-2_a20/
[1] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit., M., 2003, 272 pp.
[2] O. Kh. Masaeva, “Zadacha Dirikhle dlya obobschennogo uravneniya Laplasa s proizvodnoi Kaputo”, Differents. uravneniya, 48:3 (2012), 442–446
[3] O. Kh. Masaeva, “Apriornaya otsenka dlya uravneniya s fraktalnym operatorom Laplasa v glavnoi chasti”, Dokl. Adyg. (Cherkes.) mezhdunar. akademii nauk, 11:1 (2009), 36–37
[4] O. Kh. Masaeva, “Printsip ekstremuma dlya fraktalnogo ellipticheskogo uravneniya”, Dokl. Adyg. (Cherkes.) mezhdunar. akad. nauk, 16:4 (2014), 31–35
[5] O. Kh. Masaeva, “Zadacha Dirikhle dlya fraktalnogo uravneniya Laplasa v pryamougolnoi oblasti”, Dokl. Adyg. (Cherkes.) mezhdunar. akad. nauk, 10:2 (2008), 26–29
[6] O. Kh. Masaeva, “Kraevaya zadacha tipa Neimana dlya uravneniya s fraktalnym operatorom Laplasa v glavnoi chasti”, Dokl. Adyg. (Cherkes.) mezhdunar. akad. nauk, 15:2 (2013), 54–56
[7] A. M. Nakhushev, Uravneniya matematicheskoi biologii, Vysshaya shkola., M., 1995, 301 pp.
[8] V. I. Smirnov, Kurs vysshei matematiki, v. II, Fizmatlit., M., 1961, 630 pp.
[9] M. M. Dzhrbashyan, Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka., M., 1966, 672 pp.
[10] A. V. Pskhu, Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka., M., 2005, 199 pp.