The uniqueness of solution of the Dirichlet problem
News of the Kabardin-Balkar scientific center of RAS, no. 6-2 (2015), pp. 127-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtained a sufficient condition of uniqueness of the solution of the Dirichlet problem for the equation with operator of fractional differentiation Riemann-Liouville, corresponding the equation with Laplace operator in the main part by ABC method in the special convex region.
Keywords: Dirichlet problem, equation of fractional order, Riemann-Liouville operator, function of Mittag-Leffler type.
@article{IZKAB_2015_6-2_a20,
     author = {O. Kh. Masaeva},
     title = {The uniqueness of solution of the {Dirichlet} problem},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {127--130},
     publisher = {mathdoc},
     number = {6-2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2015_6-2_a20/}
}
TY  - JOUR
AU  - O. Kh. Masaeva
TI  - The uniqueness of solution of the Dirichlet problem
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2015
SP  - 127
EP  - 130
IS  - 6-2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2015_6-2_a20/
LA  - ru
ID  - IZKAB_2015_6-2_a20
ER  - 
%0 Journal Article
%A O. Kh. Masaeva
%T The uniqueness of solution of the Dirichlet problem
%J News of the Kabardin-Balkar scientific center of RAS
%D 2015
%P 127-130
%N 6-2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2015_6-2_a20/
%G ru
%F IZKAB_2015_6-2_a20
O. Kh. Masaeva. The uniqueness of solution of the Dirichlet problem. News of the Kabardin-Balkar scientific center of RAS, no. 6-2 (2015), pp. 127-130. http://geodesic.mathdoc.fr/item/IZKAB_2015_6-2_a20/

[1] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit., M., 2003, 272 pp.

[2] O. Kh. Masaeva, “Zadacha Dirikhle dlya obobschennogo uravneniya Laplasa s proizvodnoi Kaputo”, Differents. uravneniya, 48:3 (2012), 442–446

[3] O. Kh. Masaeva, “Apriornaya otsenka dlya uravneniya s fraktalnym operatorom Laplasa v glavnoi chasti”, Dokl. Adyg. (Cherkes.) mezhdunar. akademii nauk, 11:1 (2009), 36–37

[4] O. Kh. Masaeva, “Printsip ekstremuma dlya fraktalnogo ellipticheskogo uravneniya”, Dokl. Adyg. (Cherkes.) mezhdunar. akad. nauk, 16:4 (2014), 31–35

[5] O. Kh. Masaeva, “Zadacha Dirikhle dlya fraktalnogo uravneniya Laplasa v pryamougolnoi oblasti”, Dokl. Adyg. (Cherkes.) mezhdunar. akad. nauk, 10:2 (2008), 26–29

[6] O. Kh. Masaeva, “Kraevaya zadacha tipa Neimana dlya uravneniya s fraktalnym operatorom Laplasa v glavnoi chasti”, Dokl. Adyg. (Cherkes.) mezhdunar. akad. nauk, 15:2 (2013), 54–56

[7] A. M. Nakhushev, Uravneniya matematicheskoi biologii, Vysshaya shkola., M., 1995, 301 pp.

[8] V. I. Smirnov, Kurs vysshei matematiki, v. II, Fizmatlit., M., 1961, 630 pp.

[9] M. M. Dzhrbashyan, Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka., M., 1966, 672 pp.

[10] A. V. Pskhu, Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka., M., 2005, 199 pp.