Stability and convergence
News of the Kabardin-Balkar scientific center of RAS, no. 3 (2015), pp. 33-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

Moisture movement in capillary porous environments is described by the equation of Allera. Solutions of boundary value problems for the equation of Allera in differential and difference settings are studied. By the method of energy inequalities for the solution of the difference problem, we obtain a priori estimates. The obtained results are supported by numerical calculations carried out for some test problem.
Keywords: fractional derivative, a priori estimate, difference scheme, stability and convergence.
@article{IZKAB_2015_3_a3,
     author = {Ph. A. Karova},
     title = {Stability and convergence},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {33--40},
     publisher = {mathdoc},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2015_3_a3/}
}
TY  - JOUR
AU  - Ph. A. Karova
TI  - Stability and convergence
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2015
SP  - 33
EP  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2015_3_a3/
LA  - ru
ID  - IZKAB_2015_3_a3
ER  - 
%0 Journal Article
%A Ph. A. Karova
%T Stability and convergence
%J News of the Kabardin-Balkar scientific center of RAS
%D 2015
%P 33-40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2015_3_a3/
%G ru
%F IZKAB_2015_3_a3
Ph. A. Karova. Stability and convergence. News of the Kabardin-Balkar scientific center of RAS, no. 3 (2015), pp. 33-40. http://geodesic.mathdoc.fr/item/IZKAB_2015_3_a3/

[1] A. A. Alikhanov, “Apriornye otsenki reshenii kraevykh zadach dlya uravnenii drobnogo poryadka”, Differents. uravneniya, 46:5 (2010), 658–664

[2] M. Kh. Shkhanukov-Lafishev, F. I. Taukenova, “Raznostnye metody resheniya kraevykh zadach dlya differentsialnykh uravnenii drobnogo poryadka”, Zhurn. vychislit. matematiki i mat. fiziki, 46:10 (2006), 1871–1881

[3] A. A. Samarskii, Teoriya raznostnykh skhem, Nauka., M., 1977

[4] A. A. Alikhanov, “A new difference scheme for the time fractional diffusion equation”, Journal of Comput. Physics, 280 (2015), 424–438

[5] A. A. Alikhanov, “Boundary value problems for the diffusion equation of the variable order in differential and difference settings”, Appl. Math. Comput, 219 (2012), 3938–3946