About creation of some classes of equations
News of the Kabardin-Balkar scientific center of RAS, no. 3 (2015), pp. 25-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The question of creation of some classes of mathematical physics equations solution of which possesses preditermined properties is investigated. By means of the VKB transformation (Ventsel – Kramers – Brillouin) classes of mathematical physics equations of the second order are constructed: ordinary differential equations and equations in private derivatives of the hyperbolic, parabolic and elliptic types, solved in "reference" functions.
Keywords: the VKB transformation, "reference" equation, "reference" function, ordinary differential equations, equations in private derivatives of hyperbolic
Mots-clés : parabolic and elliptic types.
@article{IZKAB_2015_3_a2,
     author = {Kh. Kh. Kalazhokov and A. Kh. Kalazhokov},
     title = {About creation of some classes of equations},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {25--32},
     year = {2015},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2015_3_a2/}
}
TY  - JOUR
AU  - Kh. Kh. Kalazhokov
AU  - A. Kh. Kalazhokov
TI  - About creation of some classes of equations
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2015
SP  - 25
EP  - 32
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2015_3_a2/
LA  - ru
ID  - IZKAB_2015_3_a2
ER  - 
%0 Journal Article
%A Kh. Kh. Kalazhokov
%A A. Kh. Kalazhokov
%T About creation of some classes of equations
%J News of the Kabardin-Balkar scientific center of RAS
%D 2015
%P 25-32
%N 3
%U http://geodesic.mathdoc.fr/item/IZKAB_2015_3_a2/
%G ru
%F IZKAB_2015_3_a2
Kh. Kh. Kalazhokov; A. Kh. Kalazhokov. About creation of some classes of equations. News of the Kabardin-Balkar scientific center of RAS, no. 3 (2015), pp. 25-32. http://geodesic.mathdoc.fr/item/IZKAB_2015_3_a2/

[1] E. Kamke, Spravochnik po obyknovennym differentsialnym uravneniyam, Gosudarstvennoe izdatelstvo fiziko-matematicheskoi literatury., M.,, 1961, 704 pp.

[2] A. D. Polyanin, V. F. Zaitsev, Spravochnik po lineinym uravneniyam matematicheskoi fiziki (tochnye resheniya), Izdatelskaya firma «Fiziko-matematicheskaya literatura», M., 2002

[3] N. I. Lebedev, Spetsialnye funktsii i ikh prilozheniya, M., 1953

[4] G. Wentzel, Zs. Phys., 38 (1926), 518

[5] Kramers H. A., Zs. Phys, 39 (1926), 518

[6] M. L. Brillouin, C. R., 183 (1926), 24

[7] R. E. Langer, Trans. Am. Math. Soc, 36 (1934), 637

[8] L. I. Ponomarev, “Primenenie metoda VKB pri asimptoticheskom reshenii uravnenii”, DAN SSSR, 162:5 (1965)

[9] A. A. Sokolov, R. M. Muradyan, V. M. Arutyunyan, Vestnik Moskovskogo universiteta, 4 (1959), 61

[10] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, Izdatelstvo «Nauka», M., 1966, 723 pp.