About creation of some classes of equations
News of the Kabardin-Balkar scientific center of RAS, no. 3 (2015), pp. 25-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

The question of creation of some classes of mathematical physics equations solution of which possesses preditermined properties is investigated. By means of the VKB transformation (Ventsel – Kramers – Brillouin) classes of mathematical physics equations of the second order are constructed: ordinary differential equations and equations in private derivatives of the hyperbolic, parabolic and elliptic types, solved in "reference" functions.
Keywords: the VKB transformation, "reference" equation, "reference" function, ordinary differential equations, equations in private derivatives of hyperbolic
Mots-clés : parabolic and elliptic types.
@article{IZKAB_2015_3_a2,
     author = {Kh. Kh. Kalazhokov and A. Kh. Kalazhokov},
     title = {About creation of some classes of equations},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {25--32},
     publisher = {mathdoc},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2015_3_a2/}
}
TY  - JOUR
AU  - Kh. Kh. Kalazhokov
AU  - A. Kh. Kalazhokov
TI  - About creation of some classes of equations
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2015
SP  - 25
EP  - 32
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2015_3_a2/
LA  - ru
ID  - IZKAB_2015_3_a2
ER  - 
%0 Journal Article
%A Kh. Kh. Kalazhokov
%A A. Kh. Kalazhokov
%T About creation of some classes of equations
%J News of the Kabardin-Balkar scientific center of RAS
%D 2015
%P 25-32
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2015_3_a2/
%G ru
%F IZKAB_2015_3_a2
Kh. Kh. Kalazhokov; A. Kh. Kalazhokov. About creation of some classes of equations. News of the Kabardin-Balkar scientific center of RAS, no. 3 (2015), pp. 25-32. http://geodesic.mathdoc.fr/item/IZKAB_2015_3_a2/

[1] E. Kamke, Spravochnik po obyknovennym differentsialnym uravneniyam, Gosudarstvennoe izdatelstvo fiziko-matematicheskoi literatury., M.,, 1961, 704 pp.

[2] A. D. Polyanin, V. F. Zaitsev, Spravochnik po lineinym uravneniyam matematicheskoi fiziki (tochnye resheniya), Izdatelskaya firma «Fiziko-matematicheskaya literatura», M., 2002

[3] N. I. Lebedev, Spetsialnye funktsii i ikh prilozheniya, M., 1953

[4] G. Wentzel, Zs. Phys., 38 (1926), 518

[5] Kramers H. A., Zs. Phys, 39 (1926), 518

[6] M. L. Brillouin, C. R., 183 (1926), 24

[7] R. E. Langer, Trans. Am. Math. Soc, 36 (1934), 637

[8] L. I. Ponomarev, “Primenenie metoda VKB pri asimptoticheskom reshenii uravnenii”, DAN SSSR, 162:5 (1965)

[9] A. A. Sokolov, R. M. Muradyan, V. M. Arutyunyan, Vestnik Moskovskogo universiteta, 4 (1959), 61

[10] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, Izdatelstvo «Nauka», M., 1966, 723 pp.