Convergence of difference schemes
News of the Kabardin-Balkar scientific center of RAS, no. 5 (2014), pp. 17-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a priori estimate , which implies the convergence of a solution of the problem to the solution of the differential problem in the uniform metric with speed $O(h^2+\tau)$ is acquired by the method of stationary perturbations.
Keywords: differential equation of diffusion, existence and uniqueness, a priori estimate
Mots-clés : unique solvability and convergence.
@article{IZKAB_2014_5_a1,
     author = {M. H. Shhanukov-Lafishev and A. R. Bechelova and Z. V. Beshtokova},
     title = {Convergence of difference schemes},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {17--27},
     publisher = {mathdoc},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2014_5_a1/}
}
TY  - JOUR
AU  - M. H. Shhanukov-Lafishev
AU  - A. R. Bechelova
AU  - Z. V. Beshtokova
TI  - Convergence of difference schemes
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2014
SP  - 17
EP  - 27
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2014_5_a1/
LA  - ru
ID  - IZKAB_2014_5_a1
ER  - 
%0 Journal Article
%A M. H. Shhanukov-Lafishev
%A A. R. Bechelova
%A Z. V. Beshtokova
%T Convergence of difference schemes
%J News of the Kabardin-Balkar scientific center of RAS
%D 2014
%P 17-27
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2014_5_a1/
%G ru
%F IZKAB_2014_5_a1
M. H. Shhanukov-Lafishev; A. R. Bechelova; Z. V. Beshtokova. Convergence of difference schemes. News of the Kabardin-Balkar scientific center of RAS, no. 5 (2014), pp. 17-27. http://geodesic.mathdoc.fr/item/IZKAB_2014_5_a1/

[1] O. Yu. Dinariev, “Filtratsiya v treschinovatoi srede s fraktalnoi geometriei treschin”, MZhG, 1990, no. 5, 66–70 | Zbl

[2] A. V. Malshakov, “Uravnenie gidrodinamiki dlya poristykh sred so strukturoi porovogo prostranstva, obladayuschei fraktalnoi geometriei”, IFZh, 62:3 (1992), 405–410

[3] K. V. Chukbar, “Stokhasticheskii perenos i drobnye proizvodnye”, ZhETF, 108:5 (1995), 1875–1884

[4] V. L. Kobelev, Ya. L. Kobelev, E. P. Romanov, “Nedebaevskaya relaksatsiya i diffuziya vo fraktalnom prostranstve”, Dokl. RAN, 361:6 (1998), 755–758 | Zbl

[5] V. L. Kobelev, Ya. L. Kobelev, E. P. Romanov, “Avtomodelnye protsessy pri nelineinoi fraktalnoi diffuzii”, Dokl. RAN, 369:3 (1998), 332–333

[6] V. Kh. Shogenov, A. A. Akhkubekov, R. A. Akhkubekov, “Metod drobnogo differentsirovaniya v teorii brounovskogo dvizheniya”, Izvestiya vuzov. Severo-Kavkazskii region. Estestvennye nauki, 2004, no. 1, 46–50

[7] V. M. Goloviznin, V. P. Kisilev, Yu. I. Yurkov, Chislennye metody resheniya uravneniya diffuzii s drobnoi proizvodnoi v odnomernom sluchae, Preprint # IBRAE-2003-12, IBRAE RAN, 2003, 35 pp.

[8] V. M. Goloviznin, V. P. Kisil-v, I. A. Korotkin, Yu. I. Yurkov, “Pryamye zadachi neklassicheskogo perenosa radionuklidov v geologicheskikh formatsiyakh”, Izv. RAN. Energetika, 2004, no. 4, 121–130

[9] A. I. Olemskii, A. Ya. Flat, “Ispolzovanie kontseptsii fraktala v fizike kondensirovannoi sredy”, UFN, 163:12 (1993), 1–50 | DOI

[10] R. R. Nigmatullin, “Drobnyi integral i ego fizicheskaya interpretatsiya”, Teoreticheskaya i matematicheskaya fizika, 39:1 (1997), 101–105

[11] S. K. Kumykova, “Ob odnoi kraevoi zadache dlya uravneniya sign ym uxx uyy 0”, Differents. uravneniya, 12:1 (1976), 79–88 | Zbl

[12] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatgiz., M., 2003

[13] A. A. Alikhanov, “Apriornye otsenki reshenii kraevykh zadach dlya uravnenii drobnogo poryadka”, Differents. uravneniya, 46:5 (2010), 658–664 | Zbl

[14] F. I. Taukenova, M. Kh. Shkhanukov-Lafishev, “Raznostnye metody resheniya kraevykh zadach dlya differentsialnykh uravnenii drobnogo poryadka”, Zhurn. vychisl. matem. i matem. fiz., 46:10 (2006), 1871–1881

[15] A. A. Samarskii, Vvedenie v teoriyu raznostnykh skhem, Nauka., M., 1974

[16] A. A. Samarskii, A. V. Gulin, Ustoichivost raznostnykh skhem, Nauka., M., 1973