Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2014_5_a1, author = {M. H. Shhanukov-Lafishev and A. R. Bechelova and Z. V. Beshtokova}, title = {Convergence of difference schemes}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {17--27}, publisher = {mathdoc}, number = {5}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2014_5_a1/} }
TY - JOUR AU - M. H. Shhanukov-Lafishev AU - A. R. Bechelova AU - Z. V. Beshtokova TI - Convergence of difference schemes JO - News of the Kabardin-Balkar scientific center of RAS PY - 2014 SP - 17 EP - 27 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IZKAB_2014_5_a1/ LA - ru ID - IZKAB_2014_5_a1 ER -
M. H. Shhanukov-Lafishev; A. R. Bechelova; Z. V. Beshtokova. Convergence of difference schemes. News of the Kabardin-Balkar scientific center of RAS, no. 5 (2014), pp. 17-27. http://geodesic.mathdoc.fr/item/IZKAB_2014_5_a1/
[1] O. Yu. Dinariev, “Filtratsiya v treschinovatoi srede s fraktalnoi geometriei treschin”, MZhG, 1990, no. 5, 66–70 | Zbl
[2] A. V. Malshakov, “Uravnenie gidrodinamiki dlya poristykh sred so strukturoi porovogo prostranstva, obladayuschei fraktalnoi geometriei”, IFZh, 62:3 (1992), 405–410
[3] K. V. Chukbar, “Stokhasticheskii perenos i drobnye proizvodnye”, ZhETF, 108:5 (1995), 1875–1884
[4] V. L. Kobelev, Ya. L. Kobelev, E. P. Romanov, “Nedebaevskaya relaksatsiya i diffuziya vo fraktalnom prostranstve”, Dokl. RAN, 361:6 (1998), 755–758 | Zbl
[5] V. L. Kobelev, Ya. L. Kobelev, E. P. Romanov, “Avtomodelnye protsessy pri nelineinoi fraktalnoi diffuzii”, Dokl. RAN, 369:3 (1998), 332–333
[6] V. Kh. Shogenov, A. A. Akhkubekov, R. A. Akhkubekov, “Metod drobnogo differentsirovaniya v teorii brounovskogo dvizheniya”, Izvestiya vuzov. Severo-Kavkazskii region. Estestvennye nauki, 2004, no. 1, 46–50
[7] V. M. Goloviznin, V. P. Kisilev, Yu. I. Yurkov, Chislennye metody resheniya uravneniya diffuzii s drobnoi proizvodnoi v odnomernom sluchae, Preprint # IBRAE-2003-12, IBRAE RAN, 2003, 35 pp.
[8] V. M. Goloviznin, V. P. Kisil-v, I. A. Korotkin, Yu. I. Yurkov, “Pryamye zadachi neklassicheskogo perenosa radionuklidov v geologicheskikh formatsiyakh”, Izv. RAN. Energetika, 2004, no. 4, 121–130
[9] A. I. Olemskii, A. Ya. Flat, “Ispolzovanie kontseptsii fraktala v fizike kondensirovannoi sredy”, UFN, 163:12 (1993), 1–50 | DOI
[10] R. R. Nigmatullin, “Drobnyi integral i ego fizicheskaya interpretatsiya”, Teoreticheskaya i matematicheskaya fizika, 39:1 (1997), 101–105
[11] S. K. Kumykova, “Ob odnoi kraevoi zadache dlya uravneniya sign ym uxx uyy 0”, Differents. uravneniya, 12:1 (1976), 79–88 | Zbl
[12] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatgiz., M., 2003
[13] A. A. Alikhanov, “Apriornye otsenki reshenii kraevykh zadach dlya uravnenii drobnogo poryadka”, Differents. uravneniya, 46:5 (2010), 658–664 | Zbl
[14] F. I. Taukenova, M. Kh. Shkhanukov-Lafishev, “Raznostnye metody resheniya kraevykh zadach dlya differentsialnykh uravnenii drobnogo poryadka”, Zhurn. vychisl. matem. i matem. fiz., 46:10 (2006), 1871–1881
[15] A. A. Samarskii, Vvedenie v teoriyu raznostnykh skhem, Nauka., M., 1974
[16] A. A. Samarskii, A. V. Gulin, Ustoichivost raznostnykh skhem, Nauka., M., 1973