Convergence of difference schemes
News of the Kabardin-Balkar scientific center of RAS, no. 5 (2014), pp. 17-27

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a priori estimate , which implies the convergence of a solution of the problem to the solution of the differential problem in the uniform metric with speed $O(h^2+\tau)$ is acquired by the method of stationary perturbations.
Keywords: differential equation of diffusion, existence and uniqueness, a priori estimate
Mots-clés : unique solvability and convergence.
@article{IZKAB_2014_5_a1,
     author = {M. H. Shhanukov-Lafishev and A. R. Bechelova and Z. V. Beshtokova},
     title = {Convergence of difference schemes},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {17--27},
     publisher = {mathdoc},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2014_5_a1/}
}
TY  - JOUR
AU  - M. H. Shhanukov-Lafishev
AU  - A. R. Bechelova
AU  - Z. V. Beshtokova
TI  - Convergence of difference schemes
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2014
SP  - 17
EP  - 27
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2014_5_a1/
LA  - ru
ID  - IZKAB_2014_5_a1
ER  - 
%0 Journal Article
%A M. H. Shhanukov-Lafishev
%A A. R. Bechelova
%A Z. V. Beshtokova
%T Convergence of difference schemes
%J News of the Kabardin-Balkar scientific center of RAS
%D 2014
%P 17-27
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2014_5_a1/
%G ru
%F IZKAB_2014_5_a1
M. H. Shhanukov-Lafishev; A. R. Bechelova; Z. V. Beshtokova. Convergence of difference schemes. News of the Kabardin-Balkar scientific center of RAS, no. 5 (2014), pp. 17-27. http://geodesic.mathdoc.fr/item/IZKAB_2014_5_a1/