The third boundary value problem for a loaded Sturm-Liouville operator
News of the Kabardin-Balkar scientific center of RAS, no. 5 (2013), pp. 7-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions of singular (univocal) resolution of the third boundary value problem for a loaded Sturm-Liouville operator have been obtained. The uniform evaluation for solving for various cases of unique resolution has been found. The maximum principle for a loaded Sturm-Liouville operator has been proved.
Keywords: loaded Sturm-Liouville operator, third boundary value problem, method of Green’s function, maximum principle.
Mots-clés : unique resolution
@article{IZKAB_2013_5_a0,
     author = {M. H. Abregov and F. M. Nakhusheva},
     title = {The third boundary value problem for a loaded {Sturm-Liouville} operator},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {7--12},
     publisher = {mathdoc},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2013_5_a0/}
}
TY  - JOUR
AU  - M. H. Abregov
AU  - F. M. Nakhusheva
TI  - The third boundary value problem for a loaded Sturm-Liouville operator
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2013
SP  - 7
EP  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2013_5_a0/
LA  - ru
ID  - IZKAB_2013_5_a0
ER  - 
%0 Journal Article
%A M. H. Abregov
%A F. M. Nakhusheva
%T The third boundary value problem for a loaded Sturm-Liouville operator
%J News of the Kabardin-Balkar scientific center of RAS
%D 2013
%P 7-12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2013_5_a0/
%G ru
%F IZKAB_2013_5_a0
M. H. Abregov; F. M. Nakhusheva. The third boundary value problem for a loaded Sturm-Liouville operator. News of the Kabardin-Balkar scientific center of RAS, no. 5 (2013), pp. 7-12. http://geodesic.mathdoc.fr/item/IZKAB_2013_5_a0/

[1] A. N. Tikhonov, A. B. Vasileva, A. G. Sveshnikov, Differentsialnye uravneniya, Nauka, M., 1980 | MR

[2] E. Dulan, Dzh. Miller, U. Shilders, Ravnomernye chislennye metody resheniya zadach s pogranichnym sloem, Mir, M., 1983

[3] M. A. Protter, H. F. Weinberger, Maximum principles in differential equations, Prentice Hall, Englewood Cliffs, N.J., 1967 | MR | Zbl

[4] V. A. Ilin, E. G. Poznyak, Osnovy matematicheskogo analiza, Nauka, M., 1982 | MR

[5] A. M. Nakhushev, “Nagruzhennye uravneniya”, Differentsialnye uravneniya, 19:1 (1983) | MR | Zbl

[6] A. A. Alikhanov, A. M. Berezgov, M. Kh. Shkhanukov-Lafishev, “Kraevye zadachi dlya nekotorykh klassov nagruzhennykh differentsialnykh uravnenii i raznostnye metody ikh chislennoi realizatsii”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 48:9 (2008), 1619–1628 | MR