About one model of heat conductivity
News of the Kabardin-Balkar scientific center of RAS, no. 6 (2012), pp. 20-25
Cet article a éte moissonné depuis la source Math-Net.Ru
The article examines the questions relating to the convergence of an iteration process for solving the one-dimensional problem of flat cryodestruction of biological tissue with emerging her nonlinear heat source of a special kind. For three different types of sources that provide really the effect of the spatial localization of heat, presents the results of calculations on the computer.
Keywords:
spatial localization of heat, the Stefan’s type problem.
@article{IZKAB_2012_6_a2,
author = {B. K. Buzdov},
title = {About one model of heat conductivity},
journal = {News of the Kabardin-Balkar scientific center of RAS},
pages = {20--25},
year = {2012},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IZKAB_2012_6_a2/}
}
B. K. Buzdov. About one model of heat conductivity. News of the Kabardin-Balkar scientific center of RAS, no. 6 (2012), pp. 20-25. http://geodesic.mathdoc.fr/item/IZKAB_2012_6_a2/
[1] A. A. Berezovskii, “Odnomernaya lokalnaya zadacha Stefana ploskoparallelnoi kriodestruktsii biologicheskoi tkani”, Zadachi teploprovodnosti s podvizhnymi granitsami, 1985, 3–8, In-t matematiki AN USSR, Kiev
[2] A. A. Berezovskii, Yu. V. Leontev, “Matematicheskoe prognozirovanie kriovozdeistviya na biologicheskie tkani”, Kriobiologiya, 1989, no. 3, 7–13, Naukova dumka, Kiev
[3] A. A. Samarskii, B. D. Moiseenko, “Ekonomichnaya skhema skvoznogo scheta dlya mnogomernoi zadachi Stefana”, ZhVM i MF, 5:5 (1965), 816–827
[4] B. K. Buzdov, “Modelirovanie kriodestruktsii biologicheskoi tkani”, Matematicheskoe modelirovanie, 23:3 (2011), 27–37 | MR | Zbl