Some aspects of CAD mathematical model
News of the Kabardin-Balkar scientific center of RAS, no. 6 (2012), pp. 14-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

This study is devoted to the block diagram of computer-aided design in anti-mudflow events (CAD AME). It is proposed to use a mathematical model based on the energy principle in the design and placement of hydraulic structures (HS) connected to the movement of debris flow.
Keywords: a mathematical model, mudflow, energy principle, computer-aided design of antimudflow events, the Navier-Stokes equation, the model of Saint-Venant, equation of viscous liquid motion on a slope.
@article{IZKAB_2012_6_a1,
     author = {M. V. Borisov},
     title = {Some aspects of {CAD} mathematical model},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {14--19},
     publisher = {mathdoc},
     number = {6},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2012_6_a1/}
}
TY  - JOUR
AU  - M. V. Borisov
TI  - Some aspects of CAD mathematical model
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2012
SP  - 14
EP  - 19
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2012_6_a1/
LA  - ru
ID  - IZKAB_2012_6_a1
ER  - 
%0 Journal Article
%A M. V. Borisov
%T Some aspects of CAD mathematical model
%J News of the Kabardin-Balkar scientific center of RAS
%D 2012
%P 14-19
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2012_6_a1/
%G ru
%F IZKAB_2012_6_a1
M. V. Borisov. Some aspects of CAD mathematical model. News of the Kabardin-Balkar scientific center of RAS, no. 6 (2012), pp. 14-19. http://geodesic.mathdoc.fr/item/IZKAB_2012_6_a1/

[1] V. T. Chou, Gidravlika otkrytykh potokov, Stroiizdat, M, 1969, 464 pp.

[2] O. G. Natishvili, V. I. Tevzadze, “Uchet napornogo, beznapornogo i volnovogo rezhimov dvizheniya pri vozdeistvii selevogo potoka na selepropusknye sooruzheniya”, Trudy Mezhdunarodnoi konferentsii katastrofy, risk, prognoz, zaschita> \date 22-29 sentyabrya 2008, Pyatigorsk, 249–252

[3] O. G. Natishvili, V. I. Tevzadze, “Gidravlicheskie uravneniya svyaznykh selevykh potokov i ikh nekotorye chastnye resheniya”, Trudy Mezhdunarodnoi konferentsii katastrofy, risk, prognoz, zaschita> \date 22-29 sentyabrya 2008, Pyatigorsk

[4] M. V. Borisov, “O nekotorykh aspektakh energeticheskoi modeli selevogo protsessa”, X shkola molodykh uchenykh: zadachi i problemy sovremennogo analiza i informatiki>, Izdatelstvo KBNTs RAN, Nalchik, 2012, 28–30

[5] V. A. Nakhusheva, Differentsialnye uravneniya matematicheskikh modelei nelokalnykh protsessov, Nauka, M., 2006, 174 pp. | MR

[6] O. G. Natishvili, V. I. Tevzadze, Osnovy dinamiki selei, Tbilisi, 2007, 213 pp.

[7] A. V. Zvyagin, V. P. Kolpakov, “Techenie vyazkoi zhidkosti po sklonu”, Vestnik Moskovskogo universiteta, 1. Matematika, mekhanika, no. 5, 2011, 27–32 | Zbl

[8] Z. A. Nakhusheva, Nelokalnye kraevye zadachi dlya osnovnykh i smeshannogo tipov differentsialnykh uravnenii, Izd-vo KBNTs RAN, Nalchik, 2011, 196 pp.

[9] A. M. Kadomskii, A. M. Nakhushev, Yu. K. Nazarov, V. N. Borisov, “Nekotorye matematicheskie aspekty postroeniya SAPR gidromeliorativnykh sistem i sistem s/kh vodosnabzheniya”, Mezhvuz. sb.: v melioratsii>, KBGU, Nalchik, 1981