Solution of initial-boundary value problem
News of the Kabardin-Balkar scientific center of RAS, no. 4 (2012), pp. 20-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

Formula for the general member of the sequence of approximate solutions of initial-no-boundary value problem for the loaded parabolic equation, which reduces the initial-Xia quasilinear equation is obtained.
Keywords: initial-boundary value problem, loaded differential equation, approximated solution.
@article{IZKAB_2012_4_a1,
     author = {O. L. Boziev},
     title = {Solution of initial-boundary value problem},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {20--25},
     publisher = {mathdoc},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2012_4_a1/}
}
TY  - JOUR
AU  - O. L. Boziev
TI  - Solution of initial-boundary value problem
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2012
SP  - 20
EP  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2012_4_a1/
LA  - ru
ID  - IZKAB_2012_4_a1
ER  - 
%0 Journal Article
%A O. L. Boziev
%T Solution of initial-boundary value problem
%J News of the Kabardin-Balkar scientific center of RAS
%D 2012
%P 20-25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2012_4_a1/
%G ru
%F IZKAB_2012_4_a1
O. L. Boziev. Solution of initial-boundary value problem. News of the Kabardin-Balkar scientific center of RAS, no. 4 (2012), pp. 20-25. http://geodesic.mathdoc.fr/item/IZKAB_2012_4_a1/

[1] A. M. Nakhushev, “Ob odnom priblizhennom metode resheniya kraevykh zadach dlya differentsialnykh uravnenii i ego prilozheniya k dinamike pochvennoi vlagi i gruntovykh vod”, Differentsialnye uravneniya, 1982, no. 1 (18), 72–81 | MR | Zbl

[2] L. K. Martinson, Yu. I. Malov, Differentsialnye uravneniya matematicheskoi fiziki, Izdatelstvo MGTU im. N.E.Baumana, M., 2002, 368 pp.

[3] O. L. Boziev, “Ob odnom sposobe priblizhennogo resheniya smeshannoi zadachi dlya nelineinogo parabolicheskogo uravneniya”, Materialy VII Miedzynarodwej naukowi- praktyczney konferencji sa nauka I technikami 2011>, v. 51, 16–19 | MR

[4] A. D. Polyanin, Spravochnik po lineinym uravneniyam matematicheskoi fiziki: tochnye resheniya, FIZMATLIT, M., 2001, 576 pp.