Existence of generalized solution
News of the Kabardin-Balkar scientific center of RAS, no. 1 (2012), pp. 7-14
Cet article a éte moissonné depuis la source Math-Net.Ru
Existence of generalized solution is proved for second mixed problem for quasilinear loaded wave equation when odd $p \geqslant 3$.
Keywords:
loaded differential equation, generalized solution, existence theorem.
@article{IZKAB_2012_1_a0,
author = {O. L. Boziev},
title = {Existence of generalized solution},
journal = {News of the Kabardin-Balkar scientific center of RAS},
pages = {7--14},
year = {2012},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IZKAB_2012_1_a0/}
}
O. L. Boziev. Existence of generalized solution. News of the Kabardin-Balkar scientific center of RAS, no. 1 (2012), pp. 7-14. http://geodesic.mathdoc.fr/item/IZKAB_2012_1_a0/
[1] O. L. Boziev, “O slabykh resheniyakh smeshannoi zadachi dlya nagruzhennogo volnovogo uravneniya”, Ob'edinennyi nauchnyi zhurnal, 2002, no. 15 (38), 43–46
[2] O. L. Boziev, “Edinstvennost resheniya kvazilineinogo nagruzhennogo volnovogo uravneniya”, Izvestiya VUZov. Severo-Kavkazskii region. Estestvennye nauki, 2007, no. 1 (136), 5–8
[3] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975, 480 pp. | MR
[4] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973, 408 pp. | MR
[5] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989, 624 pp. | MR