Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IZKAB_2012_1_a0, author = {O. L. Boziev}, title = {Existence of generalized solution}, journal = {News of the Kabardin-Balkar scientific center of RAS}, pages = {7--14}, publisher = {mathdoc}, number = {1}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IZKAB_2012_1_a0/} }
O. L. Boziev. Existence of generalized solution. News of the Kabardin-Balkar scientific center of RAS, no. 1 (2012), pp. 7-14. http://geodesic.mathdoc.fr/item/IZKAB_2012_1_a0/
[1] O. L. Boziev, “O slabykh resheniyakh smeshannoi zadachi dlya nagruzhennogo volnovogo uravneniya”, Ob'edinennyi nauchnyi zhurnal, 2002, no. 15 (38), 43–46
[2] O. L. Boziev, “Edinstvennost resheniya kvazilineinogo nagruzhennogo volnovogo uravneniya”, Izvestiya VUZov. Severo-Kavkazskii region. Estestvennye nauki, 2007, no. 1 (136), 5–8
[3] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975, 480 pp. | MR
[4] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973, 408 pp. | MR
[5] A. N. Kolmogorov, S. V. Fomin, Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989, 624 pp. | MR