About non-loсal inner boundary problem
News of the Kabardin-Balkar scientific center of RAS, no. 6 (2011), pp. 22-33

Voir la notice de l'article provenant de la source Math-Net.Ru

The singularity of non-local inner boundary general problem for mixed equation of third order with repeated characteristic is proved.
Keywords: integral Volterra equations, connected problems, Bessel`s and Grin functions.
@article{IZKAB_2011_6_a2,
     author = {V. A. Eleev and A. Kh. Balkizova},
     title = {About non-lo{\cyrs}al inner boundary problem},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {22--33},
     publisher = {mathdoc},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2011_6_a2/}
}
TY  - JOUR
AU  - V. A. Eleev
AU  - A. Kh. Balkizova
TI  - About non-loсal inner boundary problem
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2011
SP  - 22
EP  - 33
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2011_6_a2/
LA  - ru
ID  - IZKAB_2011_6_a2
ER  - 
%0 Journal Article
%A V. A. Eleev
%A A. Kh. Balkizova
%T About non-loсal inner boundary problem
%J News of the Kabardin-Balkar scientific center of RAS
%D 2011
%P 22-33
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2011_6_a2/
%G ru
%F IZKAB_2011_6_a2
V. A. Eleev; A. Kh. Balkizova. About non-loсal inner boundary problem. News of the Kabardin-Balkar scientific center of RAS, no. 6 (2011), pp. 22-33. http://geodesic.mathdoc.fr/item/IZKAB_2011_6_a2/