Existence and uniqueness of the solution
News of the Kabardin-Balkar scientific center of RAS, no. 6 (2011), pp. 17-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

With the help of Riman’s method of functions this work presents proofs of the existence and the uniqueness of the solution of a nonlocal boundary problem of the tertiary hyperbolic equation.
Keywords: boundary problems, Riman’s method of functions, a tertiary hyperbolic equation
Mots-clés : a nonlocal problem situation, pseudoparabolic equation.
@article{IZKAB_2011_6_a1,
     author = {M. KH. Beshtokov},
     title = {Existence and uniqueness of the solution},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {17--21},
     publisher = {mathdoc},
     number = {6},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2011_6_a1/}
}
TY  - JOUR
AU  - M. KH. Beshtokov
TI  - Existence and uniqueness of the solution
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2011
SP  - 17
EP  - 21
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2011_6_a1/
LA  - ru
ID  - IZKAB_2011_6_a1
ER  - 
%0 Journal Article
%A M. KH. Beshtokov
%T Existence and uniqueness of the solution
%J News of the Kabardin-Balkar scientific center of RAS
%D 2011
%P 17-21
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2011_6_a1/
%G ru
%F IZKAB_2011_6_a1
M. KH. Beshtokov. Existence and uniqueness of the solution. News of the Kabardin-Balkar scientific center of RAS, no. 6 (2011), pp. 17-21. http://geodesic.mathdoc.fr/item/IZKAB_2011_6_a1/

[1] G. I. Barenblat, Yu. P. Zheltov, I. N. Kochina, “Ob osnovnykh predstavleniyakh teorii filtratsii odnorodnykh zhidkostei v treschinovatykh porodakh”, Prikladnaya matematika i mekhanika, 5:25 (1960), 852–864

[2] E. S. Dzektser, “Uravneniya dvizheniya podzemnykh vod so svobodnoi poverkhnostyu v mnogosloinykh sredakh”, DAN SSSR, 220:3 (1975), 540–543 | Zbl

[3] L. I. Rubinshtein, “K voprosu o protsesse rasprostraneniya tepla v geterogennykh sredakh”, Izvestiya AN SSSR. Ser. geogr., 12:1 (1948), 27–45 | MR

[4] T. Ting, A. Cooling, “Process According to Two Temperature theory of heat Conduction”, J. Math. Anal. Appl., 45:9 (1974) | MR

[5] M. Hallaire, “L'eau et la production vegetable”, Institut National de la Recherche Agronomique, 1964, no. 9

[6] A. F. Chudnovskii, Teplofizika pochv, Nauka, M., 1976, 352 pp.

[7] D. L. Colton, “Pseudoparabolic equations in one space variable”, J. Different equations, 12 (1972), 559–565 | DOI | MR | Zbl

[8] D. L. Colton, “Integral operators and the first initial-boundary value problems for pseudopa rabolic equations with analytic coefficients”, J. Different equations, 13 (1973), 506–522 | DOI | MR | Zbl

[9] V. A. Vodakhova, “Kraevaya zadacha s nelokalnym usloviem A.M. Nakhusheva dlya odnogo psevdoparabolicheskogo uravneniya vlagoperenosa”, DU, 18:2 (1982), 280–285 | MR | Zbl

[10] M. X. Shkhanukov, “O nekotorykh kraevykh zadachakh dlya uravneniya tretego poryadka, voznikayuschikh pri modelirovanii filtratsii zhidkosti v poristykh sredakh”, DU, 18:4 (1982), 689–699 | MR | Zbl

[11] R. E. Showalter, T. Ting, “Pseudoparabolic partial differential equations”, Siam. J. Math. Anal., 1 (1970), 1–26 | DOI | MR | Zbl