The boundary value problem for equation
News of the Kabardin-Balkar scientific center of RAS, no. 5 (2011), pp. 7-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the author proves the existence and uniqueness of the solution the boundary problem for equation of the third order with multiple characteristics. The uniqueness of the solution of the problem is stated by method of energy integral. The existence of solution of the problem follows from the fact that it can be reduced to an equivalent to Fredholm integral equation of the second kind.
Keywords: equation of mixed type, Gellerstedt equation, Fredholm equation, Cauchy problem, the Caputo derivative.
Mots-clés : Abel equation
@article{IZKAB_2011_5_a0,
     author = {Zh. A. Balkizov},
     title = {The boundary value problem for equation},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {7--14},
     publisher = {mathdoc},
     number = {5},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2011_5_a0/}
}
TY  - JOUR
AU  - Zh. A. Balkizov
TI  - The boundary value problem for equation
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2011
SP  - 7
EP  - 14
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2011_5_a0/
LA  - ru
ID  - IZKAB_2011_5_a0
ER  - 
%0 Journal Article
%A Zh. A. Balkizov
%T The boundary value problem for equation
%J News of the Kabardin-Balkar scientific center of RAS
%D 2011
%P 7-14
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2011_5_a0/
%G ru
%F IZKAB_2011_5_a0
Zh. A. Balkizov. The boundary value problem for equation. News of the Kabardin-Balkar scientific center of RAS, no. 5 (2011), pp. 7-14. http://geodesic.mathdoc.fr/item/IZKAB_2011_5_a0/

[1] A. M. Nakhushev, Uravneniya matematicheskoi biologii, Vyssh. shk., M., 1995, 301 pp.

[2] A. M. Nakhushev, Zadachi so smescheniem dlya uravnenii v chastnykh proizvodnykh, Nauka, M., 2006, 287 pp.

[3] V. A. Eleev, S. K. Kumykova, “O nekotorykh kraevykh zadachakh so smescheniem na kharakteristikakh dlya smeshannogo uravneniya giperbolo-parabolicheskogo tipa”, Ukr. mat. zhurn., 52:5 (2000), 716–717 | MR

[4] V. A. Eleev, S. K. Kumykova, “Ob odnoi kraevoi zadache so smescheniem dlya smeshannogo uravneniya tretego poryadka s kratnymi kharakteristikami”, Trudy Vserossiiskoi nauchnoi konferentsii, Samara, v. Ch. 3, 2004, 91–94

[5] V. A. Eleev, S. K. Kumykova, “Nelokalnaya zadacha dlya uravneniya smeshannogo tipa tretego poryadka s kratnymi kharakteristikami”, Materialy Mezhdunarodnogo rossiisko-bolgarskogo simpoziuma, Nalchik p. Khabez, 2010, 86–87

[6] A. G. Ezaova, “Kraevaya zadacha dlya odnogo uravneniya tretego poryadka s kratnymi kharakteristikami”, Vestnik KBGU, Matematicheskie nauki, no. 3, Nalchik, 2003, 22–25

[7] A. G. Ezaova, “Nelokalnaya kraevaya zadacha dlya uravneniya smeshannogo tipa tretego poryadka s kratnymi kharakteristikami”, Trudy molodykh uchenykh, 2007, no. 3, 11–23, Vladikavkaz

[8] V. A. Eleev, F. B. Nakhusheva, “Ob odnoi nelokalnoi vnutrennei kraevoi zadache dlya uravneniya smeshannogo tipa tretego poryadka s razryvnymi usloviyami skleivaniya”, Trudy 4-go mezhdunarodnogo foruma molodykh uchenykh (9-i mezhdunarodnoi konf.), Ch. 1-3, 2008, 74–78 | MR

[9] V. A. Eleev, S. K. Kumykova, “Vnutrennekraevaya zadacha dlya uravneniya smeshannogo tipa tretego poryadka s kratnymi kharakteristikami”, Izvestiya KBNTs RAN, 2010, no. 2 (33), 5–14 | MR

[10] Zh. A. Balkizov, “Lokalnye i nelokalnye kraevye zadachi dlya uravneniya smeshannogo tipa tretego poryadka s operatorom kolebaniya struny v giperbolicheskoi chasti”, Izvestiya KBNTs RAN, 2008, no. 4 (19), 65–74

[11] Zh. A. Balkizov, “Lokalnye i nelokalnye kraevye zadachi dlya uravneniya smeshannogo tipa tretego poryadka s operatorom Trikomi v giperbolicheskoi chasti”, Vestnik SamGTU, 2008, no. 2 (17), 21–29

[12] A. V. Bitsadze, Uravneniya smeshannogo tipa, Izd-vo AN SSSR, M., 1959, 164 pp. | MR

[13] A. M. Nakhushev, Elementy drobnogo ischisleniya i ikh primenenie, Izdatelstvo KBNTs RAN, Nalchik, 2000, 299 pp.

[14] A. V. Pskhu, Kraevye zadachi dlya differentsialnykh uravnenii s chastnymi proizvodnymi drobnogo i kontinualnogo poryadka, Izdatelstvo KBNTs RAN, Nalchik, 2005, 186 pp.

[15] A. A. Alikhanov, “Apriornye otsenki reshenii kraevykh zadach dlya uravnenii drobnogo poryadka”, Differents. uravneniya, 46:5 (2010), 658–664 | MR | Zbl

[16] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973, 407 pp. | MR

[17] Yu. Irgashev, “Nekotorye kraevye zadachi dlya uravnenii tretego poryadka s kratnymi kharakteristikami”, Sb. «Kraevye zadachi dlya differentsialnykh uravnenii i ikh pri lozheniya», FAN, Tashkent, 1976, 17–31