Difference schemes for the diffusion equation
News of the Kabardin-Balkar scientific center of RAS, no. 2 (2011), pp. 5-9
Cet article a éte moissonné depuis la source Math-Net.Ru
In this work the difference scheme for the diffusion equation of fractional order with lumped heat capacity of the boundary conditions is presented. In an a priori estimate for solutions of the difference problem in the uniform metric, which implies the convergence of a solution of the problem to solving the differential problem in the uniform metric speeds $O (h^2/\tau^{\alpha-1} + \tau^{\alpha})$, $h^2 = o(\tau^{\alpha-1})$, where $\tau$, $h$ are grid steps in time and space coordinate.
Keywords:
boundary value problem, fractional derivative of Caputo, difference scheme.
Mots-clés : diffusion equation of fractional order
Mots-clés : diffusion equation of fractional order
@article{IZKAB_2011_2_a0,
author = {A. B. Mambetova},
title = {Difference schemes for the diffusion equation},
journal = {News of the Kabardin-Balkar scientific center of RAS},
pages = {5--9},
year = {2011},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IZKAB_2011_2_a0/}
}
A. B. Mambetova. Difference schemes for the diffusion equation. News of the Kabardin-Balkar scientific center of RAS, no. 2 (2011), pp. 5-9. http://geodesic.mathdoc.fr/item/IZKAB_2011_2_a0/
[1] A. A. Samarskii, A. V. Gulin, Ustoichivost raznostnykh skhem, Nauka, M., 1973 | MR
[2] F. I. Taukenova, M. Kh. Shkhanukov-Lafishev, “Raznostnye metody resheniya kraevykh zadach dlya differentsialnykh uravnenii drobnogo poryadka”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 46:1 (2006), 1871–1881 | MR