About one mathematical model of cryodestruction
News of the Kabardin-Balkar scientific center of RAS, no. 1 (2011), pp. 273-276.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article the one-dimensional problem of Stefan’s type with logarithmic function of the sources of heat arising in cryosurgery is considered. On this example the problem of speed of distribution of borders of zones of cryodestruction, freezings and influences of a cold for a case of plane-parallel cryodestruction of a biological tissue is investigated. Numerically it became possible to find out a considerable delay of speed of distribution of the specified borders that confirms presence of effect of space localizsation of heat in similar models.
Keywords: mathematical model, cryosurgery, spatial localization of heat, the Stefan’s type problem, numerical methods.
@article{IZKAB_2011_1_a49,
     author = {B. K. Buzdov},
     title = {About one mathematical model of cryodestruction},
     journal = {News of the Kabardin-Balkar scientific center of RAS},
     pages = {273--276},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IZKAB_2011_1_a49/}
}
TY  - JOUR
AU  - B. K. Buzdov
TI  - About one mathematical model of cryodestruction
JO  - News of the Kabardin-Balkar scientific center of RAS
PY  - 2011
SP  - 273
EP  - 276
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IZKAB_2011_1_a49/
LA  - ru
ID  - IZKAB_2011_1_a49
ER  - 
%0 Journal Article
%A B. K. Buzdov
%T About one mathematical model of cryodestruction
%J News of the Kabardin-Balkar scientific center of RAS
%D 2011
%P 273-276
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IZKAB_2011_1_a49/
%G ru
%F IZKAB_2011_1_a49
B. K. Buzdov. About one mathematical model of cryodestruction. News of the Kabardin-Balkar scientific center of RAS, no. 1 (2011), pp. 273-276. http://geodesic.mathdoc.fr/item/IZKAB_2011_1_a49/

[1] A. A. Shalimov, S. A. Shalimov, A. P. Radzikhovskii i dr, Ispolzovanie nizkikh temperatur v lechenii opukholevykh protsessov organov gepato-pankreatoduodenalnoi zony, Metodicheskie rekomendatsii, Kiev, 1980

[2] Yu. A. Mitropolskii, A. A. Berezovskii, Zadachi Stefana v metallurgii, kriokhirurgii i fizike morya, Kiev, 1989, 42 pp.

[3] A. B. Uspenskii, “O metode vypryamleniya frontov dlya mnogofrontovoi zadachi Stefana”, DAN SSSR, 172:1 (1967), 61–64 | Zbl

[4] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, GITTL, M., 1953 | MR

[5] A. A. Samarskii, B. D. Moiseenko, “Ekonomichnaya skhema skvoznogo scheta dlya mnogo mernoi zadachi Stefana”, ZhVM i MF, 5:5 (1965), 816–827

[6] A. A. Berezovskii, “Odnomernaya lokalnaya zadacha Stefana ploskoparallelnoi kriodestruktsii biologicheskoi tkani”, Zadachi teploprovodnosti s podvizhnymi granitsami, 1985, 3–8, Institut matematiki AN USSR, Kiev

[7] B. K. Buzdov, “O kharaktere rasprostraneniya granits kriodestruktsii i zamorazhivaniya biologicheskoi tkani pri ee kriogennom okhlazhdenii”, Izvestiya KBNTs RAN, 2010, no. 4

[8] Y. Rabin, A. Shitzer, “Numerical solution of the multidimensional freezing problem during cryosurgery”, ASME J. Biomech. Eng., 1998, no. 120(1), 32–37 | DOI

[9] B. K. Buzdov, “O skhodimosti metoda kvazilinearizatsii v nelineinykh kraevykh zadachakh”, V sb. «Nelineinye kraevye zadachi matematicheskoi fiziki i ikh prilozheniya», Institut matematiki AN Ukrainy, Kiev, 1993

[10] A. A. Berezovskii, Yu. V. Leontev, “Matematicheskoe prognozirovanie kriovozdeistviya na biologicheskie tkani”, Kriobiologiya, 1989, no. 3, 7–13, Naukova dumka, Kiev